

AUDITORY IMPAIRMENT AND THE ONSET
OP DISABILITYY AND hANDICAP
IN NOISE-INDUCED HEARING LOSS

By

> D.W. Robinson
> P.A. Wivkins N.J. Rhyer
and J.P. Lawen

## ISVR Technical Roport No. 126

November 1984

## ABSTRACT


#### Abstract

An investigation was carried out on subjects with mild degrees of noise-induced hearing loos, in an endeavour to idontify measurable characteristice of hearing that identify the pointe of onoct of hearing disability (defined as difficulty in hearing speoch in various circumatances) and of hearing handicap (defined as perceived cocial disadvantage reaulting from the hearing lose), these concepto boing understood to refer to average findinge in a context of hearing lose prevention in industry.

Data woro obtained from five listening tenta, including aimulations of real- lifo, and from self-asocbsment questionnaires, and compared in each caso with corrosponding rosults for control groups of young and older otologically normal porsons who underwont identical teata. The audiological otatus of aubjects was moasured by pure-tono audiometry, tomporal resolution, frequency solectivity, and off-frequency listoning offect. The most sonoitive measure, and the one mont closely corrolated with porformance and solf aopessmont, was the pure tone audiogram. porcentago orrors in difforont liatening aituations dopend groatly on the kind of tost matorial and tho inhoront difficulty of the acountical contoxt, and thio applion irreapectivo of hearing loas. it in shown that the influonco of test conditions in largoly eliminatod by comparing the porformance of tho impaired persons with tho limit of the rango of porformanco among normal persons. In thio way an onsot point for dinability is identifiod as 30 ab hearing throshold lovol, averago over 1, 2 and 3 kHz . In the caso of handicap, thoro appoars to bo a continuous trend otarting from nomal hearing with no dofinablo threbhold of onect.


## CONTENTS

## Page

Abstract ..... 1
Contents ..... iii
Foreword ..... vii
Summary of conclusions ..... ix
List of tables ..... xiii
List of illustrations ..... svi
Symbols and abbreviations used ..... wviii

1. Introduction ..... 1
2. General outline ..... 3
3. Previous research ..... 5
3.1 Impaifment of hearing ..... 5
3.2 Disability ..... 6
3.3 Disability and impaiment ..... 7
3.4 Handicap ..... 12
3.5 Handicap, disability and impaiment ..... 17
3.6 The onset of handicap and ita relation to noise jimits ..... 18
4. Synopsis of research ains and procedures ..... 21
5. Method ..... 23
5.1 Test methods ..... 23
5.1.1 Impairment tests ..... 23
5.1.1.1 pure-tone threshold ..... 23
5.1.1.2 Temporal resolution ..... 24
5.1.1.3 Frequency selectivity ..... 25
5.1.1.4 off-frequency listening ..... 27
5.1.2 Disability tests ..... 27
5.1.2.1 Simulated social gathering ..... 27
5.1.2.2 Public address announcements in a concourse ..... 28
5.1,2.3 Listening over a telephone ..... 30
5.1.2.4 Free-field speech audiometry ..... 30
5.1.3 Handicap and self-reported diaability ..... 31
S.2 Experimental arrangements, equipment and calyration ..... 32
5.2.1 Impaimment tests ..... 32
5.2.2 Disability tests ..... 33
5.3 General protocol ..... 37
5.4 Subjects ..... 38
6. Resulta ..... 39
6.1 Method of presentation ..... 39
6.2 Results for nomal-hearing group YN ..... 39
6.2.1 pure-tone audiometry ..... 39
6.2.2 Temporal resolution and critical ratio for an octave-band masker ..... 41
6.2.3 Frequency melectivity, off-frequency liatening and critical ratio for a broadhand masker ..... 43
6.2.4 Simulated listening situations ..... 44
6.2.4.1 social gathering ..... 44
6.2.4.2 Unexpected announcements in a public concourse ..... 45
6.2.4.3 Listening on the telephone in a noisy place ..... 46
6.2.5 Free-field opeech audionetry ..... 47
6.2.6 Handicap and disability questionnaires ..... 48
6.2.6.2 Section I - Hearing in General ..... 48
6.2.6.2 Section II - Hearing in particular situations ..... 51
6.2.6.3 Section III - Reaction to Simulated situations ..... 56
6.2.7 Individual performance indices ..... 57
6.3 Reauite for noise-impaired group NI ..... 60
6.3.1 Puze-tone audiometry ..... 60
6.3.2 Tomporal reoolution and eritical ratio for an octavo-band masker ..... 63
6.3.3 Proquency belectivity, off-frequency liatening and critical ratio for a broadband masker ..... 64
6.3.4 Simulated listening situations ..... 66
6.3.4.1 Social gathering ..... 66
6.3.4.2 Unexpected announcementa in a public concourso ..... 67
6.3.4.3 Liatening on the telephone in a noisy placo ..... 68
6.3.5 Freo-field speech audiometry ..... 69
6.3.6 Handicap and disability questionnaires ..... 70
6.3.6.1 Section I - Hearing in General ..... 70
6.3.6.2 Section II - Hearing in Particular Situationo ..... 72
6.3.6.3 Section III - Reaction to Simulated Situations ..... 76
6.3.7 Comparison of YN and NI group results ..... 77
6.4 Correlations between the meadurements ..... 81.
6.4.1 Correlations within each audiological impaizment meaguzo ..... 81
6.4.2 Intercorrelations between the audiological impairment masures ..... 83
6.4.3 Intercorrelations between the performance masaress ..... 86
6.4.4 Correlations betweon the audiological and performance meagures ..... 86
6.4.5 Intorcorrelations between the self. assesaments ..... 80
6.4.6 Correlations botween self-assessments and performance meapures ..... 90
6.4.7 prediction of performance by multiple correlations ..... 92
6.4.7.2 prediction from audiological msasures ..... 92
6.4.7.2 prediction from self-assesements ..... 94
6.5 Regulta for tho older group with normal hoaring (ON) ..... 96
6.5.1 puzo tone audiometry ..... 96
6.5.2 Main tost results ..... 97
6.6 Subjoctg' amendmentg to sclf-asgegsments ..... 99
7. Intorprotation of reaulta ..... 101
7.1 clarification of concepts ..... 101
7.2 2nreshold of impairmont ..... 101
7.3 Tinreahold of diaboility ..... 103
7.t The low sence ..... 106
7.5 Rolation to noise limita ..... 121
7.6 Onect of handicap ..... 122
7.7 Relation to curront practice in the UK ..... 124
7.0 Concluding romarks ..... 128
Roforonced ..... 131
Appondices
A Teot matorial for simulation of a bocial gathering ..... 139
A. 1 Text of introduction to the video tape ..... 139
A. 2 Speoch material ..... 140
A. 3 Ropponno form ..... 142
8 Tent material for aimulation of public addreas announcements in a concourse ..... 142
B. 2 Test of introduction to the audio tape ..... 142
B. 2 Tranocript of announcaments ..... 142
B. 3 Question bheot: ..... 143
C Test materiaz for teleghono Liatening in noiso ..... 145
C. 1 Text of introduction to the audio tape ..... 245
C. 2 Speech material ..... 146
c. 3 roaponse form ..... 147
D Hord 2into for the free-field apeoch audiometry ..... 148
E Questionnairos ..... 149
E. 1 Noten on the queationnaires ..... 149
4.2 Section r. - Hearing in General ..... 150
E.3 Section Ir - Hoaring in particular Situationa ..... 154
E.t Section III - Reactions to Simulated Situations ..... 164
F Regiotration and consent form ..... 167
© Instruetions for optional amendment to self-asseosments ..... 169

This report describes in detail an investigation supported by UK Medical Research council Grant G8007081, which was carried out between 1981 and 1984.

The plan of the project was devised by two of $\mu s$ (PAN, DWR). The former undertook the development of the audiological teat protocol and the exporimental arrangenents for the simulated listening situations. Ho also carried out the pilot teste and the initial phase of the main experiment, as well as preparing a draft of the first part of this report, until hio departure in 1983 on taking up a permanent appointment elsewnere.

The conduct of the experimental work, after a ahort overlap period, was continued by another of us (NJT), who also undertook the computer aspecta of tho atatiotical analyses. He wan assiated during most of thio period in the day-to-day running of the testa by JPL, on whom devolved also the rosponoioility for record keeping and, in particular, the important taok of locating suitable nubjecta.

Responoibility for the interpretation of the cata, the prosentation of thin roport, and the views expressed, rests with the principal author (DNR).

Thanks are due to DE. R.D. Patterson, MRC Applise payenology Unit, Cambriago and Mr. E.G.T. Johnaon, British Telecomanications Rosearch Contra, Martlesham Heath, for their help at different atagen of the projoct, and also to the individuals participating as subjecto. Production of the video recording was undertaken by the Department of geaching Media, Univeroity of Southampton, whose cooperation is gratefuily acknowledged.
D.W. Robinaon

## SUMMARY OF CONCLUSIONS

## Scope and putpose

An inventigation is described, the object of which was to dotermino the paramsters of hoaring that distinguish tho onsot of hearing disability and handicap in persons chronically exposed to noise. The results are specific to hoaring losses extending only to the mild range. Different audiological factors probably operate at more severe levels of aensorinelral hearing 1088.

## Teats porformed

The teats comprisod (a) an audiological battery of (solf-recorded) pure tone audiometry, tomporal resolution, frequency aelectivity and critical ratio (for two bandwidths of masker), and off-frequency listening faculty, (D) measarge roception porformance in three gimulated real-life aftuations including an audiovisual prosentation, and opeech audiomotry at throo lovols in quict and ono lovel in a background of multivoice babbles and ( $c$ ) quoationnaire in throo parts to obtain belf-asoesements of hearing difficultios (dibability) and perceived auditory disadvantage (handicap), tho first two parto interrogating oubjects' hearing in its genoral aspocto and in nine particular aituations respectively, whilst the third part obtainod reactions to the aimulations,

## Subjocta

Throe groups participated in the experimentg. The farat group, denignatod XN, conaioted of 20 young otologically normal persons; the second, dosignated NI, comprised 24 noise-exponed persona of various agos (moan 15 Yr ) with hiatorion of aignificant (but unquantified) noiso oxpoouro and froo from extranoous otological diborders; and the third, designated on, consisted of 10 oldor otologicaliy nomnal persona, mean ago 50 yr .

## Hoaring lovals

The pure tono audiograms of group YN conformed closely with the intornational atandard of nomal hearing, and those of group ON with the intornational standard for otologically normal porsons of the appropriate ago, tho agroment applying both to mean values and to diapersion. Hearing thromold lovola in group NI variod from littlo above normal to subotantial. longod, avoraging about 30 dB at 1 kHz . Fivo of the 24 aubjocto in group NI would bo doomod to lic above the 'handicap' threshold according to the Britioh Standard critorion uaod for hoaring conoorvation; the romainder had loonor hearing lomo0s.

## Normalization of data

resultis of tests for group YN provided normative moana and standard deviations for 55 indices of impairment, listening disability and gelf-assenament. Data for subjects in groups NI and ON were then normalized by oxpreaning them relative to the mean of group yN in unite of the corresponding standard deviation thus facilitating comparisona between an individual's resulta on different teats by freeing them from the particularities of the various acales of meadurement.

## Audiological teate

These teata woro carrigd out with a probe tone of 4 kHz . Significant impaiments ware found among the 24 bubjects of group NI in respect of frequency bolectivity ( 16 affected), temporal resolution ( a affectea). critical ratio ( 5 affected). The older nomal group also showed oignificant impaimont of erequency oolectivity, but only a alight effect on critical ratio, and no detorioration of temporal resolution. The offefroquoney liotening toots ylelded no aignificant rosulta with the high-bana majker (above the froquency of tho probe tonc) and rathor woak indications of impairment with the low band manker. All meanuras except off-frequency liotening (high band) corrolated very highly with hoaring threshold deval but nono was as genaitive as hearing threonold level for diotinguiahing botwoen the impaired and normal groups. From other atudioa thia io not an unoxpected reault for the alight or mild hoaring loanes which charactarized tho majority of oubjects in groups NI and oN.

## tiotoning togta

Avorago parformance at tho three admulations and the opeceh audiomotry diffared groatly botwoen groupa NI and ON on tho ono hand and YN on the othor, but thare were largo individual differencon within groups (including tho young nomale) on oach tont, and some aubjocts gavo roaults differing wiboly acrose testa. The aimuiation of public addreas announcemonta in a atation concourso was judged the most roaliatic, with telophone listening in noiao naxt, and an audiovibual aimulation of a social gathering lang roalistic though atill judgod on avorage to bear a fair rooomblanca to roal life. Thooe teste anowed that a parson's hearing ability may bo aoriously miajudged (aither way) from speoch audiometry alono. toating in a reprogentativo rango of oituationa ia highly deairablo although it pregente major practical difficultioo.

## Corrolation potwoon the audiological and liatening toat reaulta

Deapite a few idionyncratic cases, performance at the three aimulations correlated eignificantly with the audiological teats except for temporal secolution, and moot highly (about 0.7 ) with hearing tnreshold levald avezaged over 3,2 and 6 kHz . Speech audiometzy also corrolated algnificantly with hoaring threahold lovela, both in quict ( 0.0 ) and in noiee ( 0.7 ), the value obtained with the 1,2 and 3 kHz frequency average boing higher than with the 3,1 and 6 kiz average, contrary to the aimulations. Frequency oelectivity correlated aignificantly with apecen audiometry in quict but (ourprigingly) not in noibe. remporal zegolution correlated only with apech audiometry in quict. These partly equivocal
robulta may refloct the relativoly amall impaiments of tho teat group? oxcopt for hearing throshold lovol. Tho lattor dominates the audiological deocription of these mildly impairod subjocts and ooems to vindicate this traditional uso of the puro tono audiogram as the primaxy indicator fo: hearing consarvation purposes.

## Solf-agogobmentr

Booults of the oimpler quostionnaire on hearing in goneral corrolated highly ( 0.0 ) with that on hearing in particular aituations, Both gorvod tis diotinguioh clearly botwoon the young normal group and the inpalred ten: oubjacts. It was found that the simple quostionnairs was as offoctive a:s tho olaborate ono. Attomptod alotinctions botweon 'aiasbility' ans 'handicap' asctions of tho quostionnairos producod no clear divivion of rosulto. solf-aosonaments of hoaring difficulty tondod gonerally to bs optimintic in compariaion to actual ability, ao judgod by rotronpoctivs adjuatments to onlf-rating (in the third part of tho quastionairo) aftor oxporiancing tho oimulationo. This was mogt maxked among tho oleor nompl group, wo initially ratod thoir hoaring equal to that of the young normala men, by actual porformance, it cloarly was not.

## Corrolation potwon oolf-agopgomonto arig liatoning tost rogulta

Comparigon of queationnaire seores and performanco at tho ifotenirg teste ahowed that nole-amenemment is a very unroliable guide to individual hearing ability. The overall corrolation (about 0.5 ) was comparablo with that found in other atudico and, although oignificant, it ondy permita broad trenda of average performance to be predicted from the quontionnaize rooulta.

## Corrolation botwoon nolf angespmonts and hoaring throghola lovola

For reaoona which aro not obvious, the ronulto of gelf-aponoment correlated more highly with hoaring threchold loveld (about 0.6 ) than with performance at lietoning. The same hab been obsorvod in provious otudion oven when, an hore, tho queotionnairo in atructured to tent a varioty of hearing difficultion, not only those obviously rolated to auditory nonoitivity.

## Throghold of digability

It is arguod that tho point of onoct of digability in torms of oquivalont hoaring throphold lovol cannot bo uniquoly dofinod on tho bapio of a diacontinuity in a curvo although rocont otudios havo uned thio prineiplo. Tho location of tho diocontinuity io both indiatinct and doponde on tho difficulty of tho toat unod to charactorizo disability, it dood not ovon exiat in mituatione whoro normal hearing persons are airoady in difeiculty. Tho onsot point hao to bo dofinod ao as to diatinguibh botweon poopla, and not botwoon altuationg. By dofining a ithreahoid of Inobility' in oach tost as tho point corromponding to tho 2nd porcontilo of noxmel parformanco, the oquivalont hoaring throphold lovol ia ahown to bo much loan copondont on tho particular tost, and a componito valuo of 30 as for tho 2,2 and 3 kHz avorago ( 0 m 38 dB for 3, 1 and 6 kHz ) 1 a arrivod at for a gonoral thromold of dinablility. Thooo valuos, though numorically

```
groater than conventional lovols of the 'low fence', do not inply any rolaxation of linfrify s:orumrvation atandards but arise simply from a redefinition of terms.
```


## Tnreshold of handicap

A procedure aimilar to that above was applied to the golf-assesoed handicap measurod by quootionnaire. In this case it is shown that nandicap riben progroanivoly over the entiro hoaring threshold level range and that a thronhold for handicap is indiatinguishable from the upper end of the nomal range of hearing threghold level (about 10 dB for the 1,2 andia kiz averago).

1. Hoaring lons formulao ..... 2
2. Somo btudios relating disability and impaimont (othor than hoaring sonsitivity) ..... 10. 11
3. Some btudien omploying hoaxing handicap questionnairon ..... 13•15
4. List of oloctronic oquipmont ..... 36
5. Rosults of puro tono audiomotry (Group YN) ..... 40
6. Rosults of tomporal robolution and octavo-band exitical Eatio toats (Group XN) ..... 41
7. Comparioon of throphold dotorminations at 4 kHz ..... 42
B. Rooulta of Eroquency aolectivity and offeroquoncy lintoning tonto, and broadband critical ratio (Group YN) ..... 43
8. Ronulta of gimulation of social gathoring (Group YN) ..... 44
9. Rogults of aimulation of announcomonts in a concourac (Group YM) ..... 45
10. Rogulta of gimulation of listoning on tho telophono (Group XN) ..... 46
11. Robuits of freo fiold bpeoch audiometry (Group XN) ..... 47
12. Questionnairo Soction I: Group YN individual ocores on dioability quastiono ..... 99
13. guoationnaire Soction $I ;$ Group $Y N$ individual bcores on handicap quontions ..... 50
14. Quontionnairo Soction IIt Group YN individual bcorod on dioability quostions ..... 52. 53
15. Qucationnairo Soction II: Group XN indiviaual gcorso on handicap queations ..... 54
16. Quentionnairo Section II: Group YN redulto for aituation B and dituations B-C.G combincd ..... 55
17. Summary of reaponnes of YN group to section III of the quobtionnairo ..... 57
18. Normalized indices ..... 58-59
19. Results of pure-tone audiometry (Group NI) ..... 60.61
20. Results of temporal resolution and octave-band critical ratio teats (Group NI) ..... 63
21. Reaults of frequency solectivity and off-frequency listening teats, and broadband critical ratio (Group NI) ..... 64
22. Reaulta of simulation of gocial gathering (Group NI) ..... 66
23. Resulta of simulation of announcements in a concourse (Group NI) ..... 67
24. Results of simulation of listening on the telephone (Group NI) ..... 68
25. Reaulta of free-field opeech audiometry (Group NI) ..... 69
26. Quentionnaire Section I: Group NI individual scores on dieability quabtions ..... 70
2日. guentionnaize Section I: Group NI individual acorea on handicap queations ..... 71
27. guontionnaire Section II: Group NI individual acores on diaability quentions ..... 72-73
28. Questionnaire Section II; Group NI individual gcores on handicap questions ..... 74
29. Questionnaire Section II, Group NI reoulta for astuation $\mathbf{B}$ and oituztions B-C-G combined ..... 75
30. Summary of responses of NI group to section III of the queationnaire ..... 76
31. Ioaring of NI group relative to nomal group YN ..... 77
32. Global comparimons of group NI retulta on impaiment, disability and handicap (self-aseesemtent) meacurea ..... 80
33. Correlation coefficiente petween left and right ear meaburen ..... 82
34. Pactorn relevant to the left-right ear correlations ..... 83
35. Correlation coofficiente (for left-right ear means) between the audiological impaimment measures ..... 85
36. Correlation coefficients between the performance measurea (dyesch audiometry and simulations) ..... 07
37. Correlation coefficients between peformance and selected audiological measures ..... 89
38. Correlation coefficients between the relf-assessments by questionnairea ..... 89
39. Correlation coefficients between performance and self-agaessments ..... 90
40. Correlation coefficients between performance at the simulations and the self-asgessment of disability and handicap in three corresponding situations $\mathrm{B}-\mathrm{C}-\mathrm{G}$ ..... 91
41. Summary of multiple correlation and regreasion analysis between performance scores and audiological meanures ..... 93
42. Summary of the 1-factor and 2 -factor regreseion analysis between performance scores and self-assessments ..... 95
43. Sunmary of results of pure-tone audiometzy for group on ..... 96
44. Comparison of hearing threahold levels of the three tent groupa and standardized presbyacusia data for an otologically normal population with the same mean age an group ON ..... 96
45. Comparioon of bunmarized test results for groups YN , NI and ON ..... 98
46. Queationnaire Section III, a postertort amendments to respondes on Section II ..... 100
47. Entimates of hearing threshold level at the tnability threahold defined by the 2nd percentile of young noxmal performance ..... 107
48. Cozrelation coefficients between self-asseasments and hearing threshoid level (left/right ear average) ..... 125
Page1. Mean percent correct responses of three groups as afunction of speech-to-noiso ratio (After Suter, 1978)19
49. Mean percent correct reaponses for speech-to-noise ratio of approximately 0 dB , as a function of hearing threshold level, for 48 subjects (After Suter, 1978)20
50. Average hearing loss for speech in noise at levels of 40,55 and $70 \mathrm{~dB}(\mathrm{~A})$ as a function of hearing loss (average over $1,2,3 \mathrm{kHz}$ ) for 44 ears. (After Smoorenburg ot al, 1981)
51. Schematic diagram of the stimuli used in the test of. temporal resolution24
52. Schematic diagram of the stimulit used in the tests of frequency selectivity and off-frequency listening ..... 26
53. Schematic diagram of the layout of the test room ..... 33
54. Schematic diagram of the equipment used for thesimulations and the free-field speech audiometry340. Distributions of hearing threshold levels as functionof age, illustrating threaholde of imperfection andabnormality102
55. Dintribution of error scores at the five listeningporformance teate, illustrating thresholds of inabilityand abnormality104
56. Relations between phoneme, word and sentenceintelligibility scores in speech audiometry305
57. Percent ghonemo error acores at spoech audiometry in quiet against hearing threbhold levels (averago OE 1, 2, $3 \mathrm{kH} \%$ )
58. Percent phoneme error scores at speech audiometry in quiet against hearing threshold levela (average of 3. 4, 6 kH2)
59. Percent phoneme error scores at speech audiometry in noise againat hearing threshold levals (average of 1. 2, 3 kHz )
14, Percent phoneme error scores at speech audiometry in noise against hearing threshold levels (average of 3. 4, 6 kHz )
60. percent item error scores at Simulation 1 (bocial gathering) against hearing threshold levels (average of 1, 2, 3 kHz ) ..... 112
61. percent item error acores at Simulation 1 (social gathering) against hearing threshold levels (average of 3, 4, 6 kHz ) ..... 113
62. percent message exror scores at simulation 2 (public addreas announcementa in a concourse) against hearing threshold levels (average of $1,2,3 \mathrm{kHz}$ ) ..... 114
63. percent mepsage error acores at Simulation 2 (public addrens announcements in a concourse) against hearing threahold levels (average of $3,4,6 \mathrm{kHz}$ ) ..... 215
64. percent item error scorea at Simulation 3 (telephone liotening in noiby place) againat hearing threshold levels (average of $2,2,3 \mathrm{kHz}$ ) ..... 116
65. parcent item error scoxen at Simulation 3 (telephone listening in a noisy place) against heaxing threnhold levels (average of 3, 4, 6 kHz ) ..... 217
66. scale scoren on queationnaire section 1 , 'liandicap' quentiona, againat hearing threshold levels (average of $2,2,3 \mathrm{KHz}$ ) ..... 126
67. Scale acores on Questionnaire section 1 , 'handicap' quegtiont, againat hearing threshold levela (average of 3, 4, 6 kHz ) ..... 127

## SYMBOLS AND ABEREVIATIONS USED

| $a_{1} \ldots \ldots a_{15}$ | Normalized impairment indicea, defined by ( $A-x$ ) $/ \nu$ or (in some cases) as composites of cognate a values. |
| :---: | :---: |
| A | General symbol for an individual test score |
| CR | Critical ratio, expressed in ds |
| $\begin{aligned} & \mathrm{CR}-1 \\ & \mathrm{CR}-2 \end{aligned}$ | $C R$ for octave band masker, equal to ( $T_{\mathrm{C}}-N_{\mathrm{tr}}$ ) $C R$ for broadband masker, equal to ( $T_{\mathrm{B}}-\mathrm{N}_{\mathrm{fg}}$ ) |
| $d_{22}, d_{20}$ | Normalized indices of aelf-asseased disabillty, defined analogously to $a$ |
| D | Disability (wHO) |
| P3 | Frequency selectivity |
| $\begin{aligned} & \mathrm{FS}-1 \\ & \mathrm{FS}-2 \end{aligned}$ | Prequency eelectivity index defined by the value of $T_{N}$ Frequency selectivity index defined by ( $T_{\mathrm{N}}-\mathrm{T}_{\mathrm{B}}$ ) |
| $n_{2 s,} n_{20}$ | Normalized indices of self-asaessed handicap, defined analogousiy to a. |
| H | Handicap (wHO) |
| $\boldsymbol{H}$ | Ceneral symbol for an indzvidual value of frrt |
| $\begin{aligned} & A^{L}, A^{R}, A^{[R} \\ & H_{i}, H_{i j k} \end{aligned}$ | frit in a left ear, right ear, average of left and right ears, respectively <br> HTL at frequency $i(k H z)$, averaged over frequencien i,j, $k$ respectivaly |
| HPTL | Hearing dieability threshold level |
| HMT | Hearing threshold level. |
| [ | Impairment (WHO) |
| $L$ | General symbol for a sound pressure level, in dB re $20 \mu \mathrm{~Pa}$ |
| $N$ | Generial aymbol for a sound pressure apectrum level, in dB re $20 \mu \mathrm{PaHz}^{-1 / 2}$ |
| $\mathrm{N}_{\mathrm{t}} \mathrm{F}$ <br> $N_{\text {fis }}$ | Individual value of $N$ for octave band masker, at 4 kHz Common value of $N$ for broadband masker, at 4 KHz |
| NI | Noise-induced subject proup |
| NS | Not statiatically aignificant |


| OF | Off-frequency listening efficiency |
| :---: | :---: |
| OP-H | Index of impairment of of observed with high-band masker, equal to ( $T_{\mathrm{t}}-T_{\mathrm{N}}$ ) |
| OP-L | Index of impairment of op observed with low-band masker, equal to ( $T_{\mathrm{L}}-T_{\mathrm{N}}$ ) |
| ON | Older normal-hearing subject group |
| $p_{16} \ldots \ldots p_{21}$ | Normalized disability indices, defined analogously to a |
| I | Product-moment correlation coefficient |
| Renset | Reference equivalent threshold sound pressure level (audiometric zero) |
| $\boldsymbol{s}_{\mathbf{2 4}}$, $\boldsymbol{s}_{\mathbf{2}}$ | Normalized overall self-assessment indices (composites of $d$ and $h$ ) |
| SAN | Speecl audiomatry (free field) in noise |
| SAP | Speech audiometry ( free-field) in quiet |
| SD | standard deviation |
| $T$ | General aymbol for threshold sound presaure level (dB re $20 \mu \mathrm{~Pa}$ ) of 4 kHz probe tone |
| $T_{c}$ | Value of $T$ with continuous octave band masker (in Tr test) |
| $T_{m}$ | value of $T$ with modulated (gated) octave band masker (in TI teot) |
| TQ | Value of $T$ in quiet, equal in principle to $\left(H_{4}+k\right)$, Where $k$ is the value of RETSPL at 4 kHz for the audiomotric calibration in use |
| $T_{B}$ | Value of $T$ with broadband masker (in PS test) |
| TN | Value of $T$ with notched-spectrum masker (in PS test) |
| $T_{H}$ | Value of $T$ with high-band masker (in Op-H test) |
| Tt | Value of $T$ with low-band masker (in OpmL test) |
| \$I | Impaiment of temporal reeolution |
| TI-1 TI-2 | memporal impaimment ince's cefined by the ratio of $\left(T_{M}-T_{Q}\right)$ to $\left(T_{C}-T_{M}\right)$ <br> temporal impairinent index defined by ( $T_{M}-T_{C}$ ) |
| $\omega$ | weighting factor for subijecta' familiarity with test situation |
| $\boldsymbol{z}$ | Mean value of a test score A for subject group YN |
| V | SD of individual test scores A for subject group KN |
| $\mathbf{Y N}$ | Young normal-hearing subject group |

## 1．INITRODUCTICN

It might be supposed that the principal determining factor in sotting limita for occupational noise exposure，and in compensation for hearing 10ss already sustained occupationally，would be the effoct of the noiso－induced hearing loss（NLHL）on the liven of thosse exposed．In practice the amount of loss is ajmost univernally agneneed from the pure－tone audiogram，despite the fact that the picture obtained in this way is known to be incomplete with respect to the perceived effects of the losn．It is not particularly burprising that the iasue ia to nome oxtent bido－etepped in this way since the audiogram can be dotermined relativaly casily and without ambiguity，whereas there are groat difficultien in invegtigating and dofining the broader aspects of hearing $108 s$.

To obviate any confueion botwoen the meanings of torma used in this raport it in nocessary at the outsot to make clear distinctions betweon three concepte required to describe the atate of a person＇s hearing．por this purpose we have based the usage on the definitions of the morrd hoasm ORCANIZAIION（2980）which，in the prosent context，reduce asaentially to the following：


The relationship botweon thase concopte and the mothoos usad for thair masourement（in tho case of I）and ageasment（in the case of $D$ and $B$ ）have bean diacussed by DAVIS（1943）and by WILKINs and Fobinson（2903）．A moro general raviaw was provided by Nosis（197日）．It io evident that the impect of a noibe exposure will vary according to a multiplicity of factora，oven though the noise exposure may bo the eame．for examplo， somo individuals auffor much groater impairmont than others as moasurod by objective tegts aum as audiomatry（and are then usually deacribed as boing the＇ausceptible＇or＇tondor＇type）；peoplo with abaentially the camo Cogree of hoaring impaiment may auffor different diaabilitios due to their varying oapacitiog to comprahond auditory information and thone with elmilar levols of dianbility may bo handicappod in varying degroen or not at all because of thoir difforing personalities and lifa atylea．somo aspecta of dipability aze amenable to quantitative maanurement，for example by means of opeech audiometry，and it is posajble to troat the rolation betmeen these mensurementa and objoctive impairment menauras as valid－ within dafinable atatibtical limita－for a given population．Howevar， this cannot be said of disability as a whole，or of handicap，aince what is normal human activity for some may be unnecasaary or irrelevant for othera． Even leas is it poasible to apoak of population norms for the ascemsment of handicap in its broadest sense，for this concept depandes on social and cultural factors that are more amonable to doberiptive than to quantitative handiling．Nevortholoas an approach to tho atudy of handicap－alboit an incomplate approach－can be made by icentifying situations that are common or univarsal within the population to be studiad，and to investigate the disadvantages dua to hearing loss that members of that population perceive in thomselves or are percoived by their peors．

Toble 1: Hearing loss formulae

| Source | Prequencies <br> ( kHz ) | Formula | Low fence <br> (dB re <br> ISO 389) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| Fowler (2942) | 0.5, 1, 2, 4 | Weighted 0.15, 0.3, $0.4,0.15$ | 10 | 1 |
| AMA (1947) | 0.5, 1, 2, 4 | Variable weights (depending on FHTLs) | 20 | 1 |
| AAOO (1959) | 0.5, 1, 2 | Unweighted average | 25 | 1 |
| ISO (1971, 2975) | $0.5,1,2$ | Unweighted average | 25 |  |
| NIOSH (1972) | 1, 2, 3 | Unweighted average | 25 |  |
| DHSS (1974) | 1, 2, 3 | Unweighted average | $\begin{gathered} 40 \\ \text { (notional) } \end{gathered}$ | 3 |
| Macrae (1975-6) | $\begin{aligned} & 0,5,1,1,5, \\ & 2,3,4 \end{aligned}$ | Weignted 0.2, 0.25 , $0.2,0.25,0.2,0$. | $\begin{array}{r} 63 \mathrm{KHz}: 20 \\ 4 \mathrm{kHz}: 25 \end{array}$ | 2 |
| CHABA (1975) | 1, 2, 3 | Urweighted | 35 |  |
| 835330 (1976) | 1, 2, 3 | Unweighted average | 30 |  |
| Berney <br> (Ginnold, 1979) | 0.5, 1, 2, 4 | Unweighted average | 25 | 4 |
| oregon (Ginnold, 1979) | $0.5,1,2,4,6$ | Unweighted average | 25 | 4 |
| ISO (2902a) | - | None standardized | - | 5 |
| A80 (1979) | 0.5, 1, 2, 3 | Unweightod average | 25 | 6 |
| Brit. Aap, of otolazyngologiats (Anon, 2983) | 1, 2, 4 | Unweighted average | 20 |  |

Noton:
General: The table is not extraustive, Mont of the 'low fence' values derive from considecatione of compenation) others (a.g, BS 5330, ISO, NLOSH) relate to preventive masures.

The 'low fence' values waza originally given in terma of pro-1969 american standard hearing levele,
$2 \quad 1$
'Low fence values later revibed to 15 dB . The Auptralian gystem calculaten dienbility for the bettor oar at each frequency bofore averaging, Compensation is payable only for 50 aB or greater.
An example of individual state formulan in use in USA.
The reviaion of ISO 1999 mentions geveral formulae but makes no specific zecommenation.
6 I Also ueed in canada (except A.C. and P.Q.) with 'low fence' at 3548.

## 2. GENERAL OUILINE

Much has been written about the effects of hearing loss in general and of NrHL in pacticular, but a coherent body of scientific knowledge adequate for practical application has not been fully developed. Ihe information, partly in its nature, is Eragmentary and different criteria are in use with ostensibly the same aime. It is a gignificant commentary on the state of the art that the INTERNATIONAL ORGANIZATION for STANDARDIZATION (ISO, 1982a), in reviaing its 1975 gtandard on the assessment of noise for hearing conservation purposes, has actually backod away from specifying some of the essential parameters (which it formerly included), leaving it to users in different countries to decide for themselves. Only the relation between noise exposure and its audiometric consequences is fully specified: the relative importance of different frequencies and the amount of threshold shift deemed significant are not. This area has been studied extensively, but even so there are large disparities between results of different investigations, these have been averaged away, without a full undergtanding of the reasons for them, in the revised Standard. There has been a lesser, but still considerable, research effort into the relations between other measurable impairments of the hearing mechanism (principally the faculties of frequency selectivity and of temporal resolution) and the audiogram or the otological classification of persons with various types of hearing loas. There is a vast body of data on the intelligibility of speech under varioius teat conditions and its relation to the above impaiment measures. By contrast, information is much less abundant on the way that hearing loss actually affects people's everyday lives, and on the ways in wich they depend upon their hearing or compensate for its deprivation by meang of their other faculties. clearly in a matter so overlaid with personal variability as this, a complete picture would be virtually unobtainable except on an individual basis, and this would be of little help in the practical matter of broad-based hearing conservation. At the same time, the uae of pure-tons audiometry, or of peychoacoustical teata uning abetract acoustical stimuli, or even the administration of bomewhat artificial speech testo, can be seen as rather inadequate surrogates for the direct anoossment of hearing handicap. the present investigation is aimed at exploring the possibilities of tests more closely related to the latiter, Whilat keeping in the foreground the potential practical application of the procedures used, and without abandoning the important evidenco that is more easily obtained by objective testa.

Recent interest in this area has centred on proposals for legislation dealing with occupational noise (HEALCH AND SAFEITY COMMLSSION, 1981, COMMSSION OF THE EUROPEAN COMMUNITIES, 1982, 1984). The impact of theae proposals on the makers of noise would be direct: and quantifiable. on the other hand, the benefit in ternu of hearing loge prevented, although apparently calculable, is gubject to very large uncertainties becaube the long-term effects of such legislation, as wall as economic and technological developments, can vitiate any numerical projections, in practice the effect in terms of hearing handicap is not overtly conaidered at all. It is true that the schemen under consideration are presented as being underpinned by a scientific framowork (albeit they arrive at rather different criteria for noise limitation and greatly different ones for the mandatory implementation of biological monitoring), but at best they rely on the crucially important concept of a 'low fence', the minjmum degree of measurable impaimant (normally a pure-tone threahold ghift measure) above which a disability is deemed to exist. Table 1 gives some examples. In
the context of compensation payment, not only is the point of onset of disability required but also an index that describes the wole range from normal to deaf. Different indices have been used for this purpose, invariably derived from the pure-tone hearing threahold levels at different audiometric frequencies but combined in various ways and with various waightings. These in turn have resulted from attempts to correlate the audiogram with speech intelilgibility, the diversity ariaes in part from the unlimited variety of speech teats and ligtening configurations that can be devisad. The frequency 2 kFtz appears to feature in all such formulae, e.g., the $0.5,1,2 \mathrm{kHz}$ average recommended by the American Acaderay of Ophthalmology and otolaryngology (COMMITHEE ON CONSERVATION OF HEARING, 1959), and the $1,2,3 \mathrm{kHz}$ average in use in the U.K., both in compensation regulations and standards for hearing conservation. The role and waighting appropriate to other frequencies is much diaputed. WARD (1983) discunses the difficultios in establighing an easily measured index of handicap in the context of compensation, and enumerates 11 asaumptions wich underpin the recent revision of the Anertean index by tho American Medical Association and the American Acsdemy of otolaryngology, now the 0.5, 2. 2, 4 kHz average. The Britioh Agnociation of otolaryngologista (ANON, 19e3) recently abandoned its previous ponition which wan in line with U.K. official practice, in favour of 1,2 and 4 kFiz . It is instructive to note that these changes of fashion all contre around the accuracy of speech intelilgibility corzelations to the pure-tone audiogram, the variations ariaing from particular experiments in which the gpeech ia either presented with ar without background noise. competitions between correlation coofficiente, none of which diffar vory much, may be sean as a somewhat apecioun exereine if the repulta have little relation to hearing in the real and evaryday world of the hearing impaired. The quest for optirnum correlation is, of course, rationalized by the observation that lose of capacity for hearing speech is the main ingredient in the handicap, but the strength of this argument is much diminished if the 'speech' in question 10 artificialiy contrivad, and the picture is in any case clouded by contradictory rasulta obtained in different investigations.

The need for a aystematic investigation of handicap absociatod with NIHL has been recognized for some time and the work of NOBLE $(1970,2978)$ 1s probably the most extengive to date. Hia mathod, howover, is directed mort at the evaluation of the individual and does not lend iteolf to the development of indicen derivable from measuremente that can be applied to populations as a woia. In the present investigation wa havo bet ourselvas a more rastrictad targat with a practical objective, nomoly to atudy the 'oneet' of handicap, in a broader context than that of mpeoch audiomotzy, and to relate it to tho more objective meanurable attributen of hoaring, The ain might be described as a atudy of a more generalized concapt of the 'low fence'.

This report reviews the relevant previous research in this field, and then deacribes an experimental method wich has been developad apecifically to aggese the onset of handicap due to NIHL. The mothod differs from that of previous mtudios in that tho impairment, disability and handicap aspectn of hearing loas are all brought togother within a singio experimental protocol. Tho toste were firet applied to a group of nomma hearing subjecto to provide a bagoline for compariaon. Deviationo from thia baseline were then determined for a group of nodse-expoeed individualo with mild to moderate degreas of hearing lofs. These comparisona illuptrate the benaitivity of the method for diacriminating between the exposed subjacta and the normale in reapect of the various impaiment, disability and
handicap measures used. The same tests were also administered to an older group of subjecta with no history of significant noise exposure in order to provide some basis of comparison between the effects of hearing loss due to noise and that associated solely with age. subjects with gross otological abnormality or an adverse medical histary relating to hearing were excluded from each group.

## 3. PREVIOUS RESEARCR

## 3.1 tmpatrmont of neartng

Extensive research data have been published relating noise exposure to impaiment of auditory function as measured by pure-tone audiometry, for example, BURNS and ROBINSON, 1970, PASSCHIER-VERMEER, 1968; BAUGHN, 1966. passchier-Vermeer's report is itself a digest of eight earlier invertigations. Baughn's data were used exclusively in preparing the first ISO recommondation in 1971, the other material not being available at the time this was drafted (1967), subsequently doubts were raised about the accuracy of the data underlying the 150 recomendation, and the current revision already referred to was set in train at the instance of the united Kingdom. For thim purpose an evaluation of the above data was undertaken by JOHNSON (1980) and aftar some aujustment and discussion in the responsible iso Working Group a formulation based on a aimple arithmetic average of the data of Burns and Robinson and of passchier-vermeer was adopted (ISO, 1902a). It is worth noting that even in this comparatively woll-reaearched field quite large diacropancies remain. This arises in part from a lack of uniformity in defining an appropriate base-line of normality. From one standpoint this is taken to correspond to a young otologically screened population, from another to an unacreened age-atratified and non-axposed population matched in other respecta to the noige-exposed population of interest, The uncertaintles of epecification are naturally greater in the latter case but againet this it may be held that it is more relovant in practice.

Data in the literature axe almost as discordant with regard to agh-miatad hearing lose (with no noiae involvament at all, at least, occupationally) and although a draft international standard (IsO, 1982b) has alpo been arrived at to gumarize these data on the basis of a review by ROBINSON and SUTHON (1979) itn merit is practical convenience, there is no divguiaing the intrineic diecropanciea between the numerous experimental atudies in this field. Another important limitation occura in these population etudies of impaiment, namely the large inter-individual diepersion of hearing threshold levela even among groups that are Itsikyonsous for age, sex and noiee exposure. In dealing with tho more personal concepty of disability and handicap, it would ideally be appropriato to compare the present condition of an individual with the person'e initial, uninpaired etate. Unfortunately that is rarely possible, and one hae to assume the initial condition to be that of the population norm, although this is clearly inaccurate in most casen. It is a legitimate question to ask whothar a person whose original hearing senfitivity was at the extreme sensitive end of the nombl range of variability but wo has since acquired a thremhold shift of, say, 20 ds


#### Abstract

(and so remains within, but at the other extremity of, the nomal range) is disabled in comparison to another whose hearing began and remained at the latter level. No doubt the first person would answer that he was, but this could not be tested by audiometry alone.


Despite thege limitations and qualifications, existing knowledge of the redation between noise exposure, age and the audiogram juetifies its use for the purposes of industrial hearing conservation and, of course, it has been oo used in a variaty of developing forms for many years. The audiogram is, howovor, a blunt inatrument and providan no rational basis for getting noino limito. Flecent work has emphaoized that noise attacks auditory functioning in wayo other than aimple loas of gensitivity, and these may in the end prove to bo more relevant. Research in thia field has identified at least three aspects of impairment: froquency selectivity (FLORMNINE at ab, 2980): temporal intagration (CHUNG and SMITH, 1980): and temporal resolution (ZNICKER and SCHOKN, 29B2). The assence of impaiment of those functions ia that it interferes with the identification and perception of sounde at their natural lovels of occurrence as difinct from the question of actual audibility. Definitive data on thene effects axe, however; atill lacking, as also is clany ovidence of their independence from heaxing mensitivity and of thoir raal implications for averyday liatening abilition.

### 3.2 Dtacotitty

Disability can be meamurad by $100 n$ of perfozmance at opecific hearing tasks, the variety of which is almont unlimited. The test commonly uned in the laboratory and ciinic is speoch audiomatry, omploying santences or word liets preaented monaurally over headghones in quiat conditions. A large number of variante have been described, which include the addition of competing noise (or othar apeech), free-fiold binaural listening, spactral or temporal filtering of tho apeach aignal, and the addition of rovarberation. The extact purpose of theoe modifications is not always atated, but the general iden is usually to sensitize the teat (that is, enhance ite power to diacriminato between finer lovela of disability), to provide graater realism, or to maka the tast more difficult (and so raduce the proportion of uninformative all-correct ranponsea). A full account of the factoza involved in apeech teats, of the inherent uncertaintien, and of the peinciples of power $v$, sonaitivity in different veraions of the teat, has been given by LYRECAARD at al (1976).
cleariy, what is requirad in the contort of datermining handicap is a met of dieability toots covaring a representative range of commuication aituations encountored in daily life (or, at leant, the daily liven of the population to bo atudied). Whilat the range of auch situations is virtualiy unlimited an to dotail, the following factors and contranta can be 1dentified:
(1) interactive communication or pasaivo listoning
(ii) nature of the auditory material (apeoch, other recognizable sounde, abstract mounde)
(iii) eemantic content of the material (premonitory, interrogativa, informative, noutral)
(iv) (in case of speech) the voice (normal, raised or lowered, received or deviant pronunciation, etandard idiom or dialect, quality of elocution)
(v) (in case of speech) Liatener's familiarity with the language and lexicon in use
(vi) acoustic conditions (reverberant, typical ambient, dead)
(vii) noise or other competing acoustic stimuli.
(viii) listening with one or both ears
(ix) set of the listener (attention directed to, or diatracted from, the primary hearing task)
(x) viaual cues

Regarding tha way that these factors are realized in diaability teats, it is notabla that almost all focus on the tank of liatening as a passtyo activity, mainly becaute of the difficulty of structuring and meoring a two-way tast. This limitation can be overcome in special circumatances, such as in tolophonomotric performance rating whare trained crews of teaters can be used to ashons the quality of a communication link by interaction botwoen talker and liatenor in pairs (RICHARDS, 1973).


#### Abstract

Whatever the chosen teat material, a vaxiaty of mans axdata for presenting it and for acoring performance. Common responee modes are for the aubject to repeat varbaliy what he heard, to write it down, or to pretel a labelled button. The material may be gelected in different ways, likowtee the available responses. The latter may be an open choice from the total available vocabulary of the aubject, or a aelected subect of the vocabulary (auch as all meaningful monoayllables), or a atrictiy limited sat of forced-choice alternativen (typically 4 or 6 ). In addition, lena diroct methods might be employed, auch as rating the effort of listening. Por example, the International Tolegraph and Telephone consultative comaittes (CCITM, 1982) hava apecified a 5-point category acala of lietening effort for the assessmant of telephone tranomieaions, running from "complete relaration poseible" to "no meaning understood with any feanibla affort".


In papaive apaech taste, the nature of tho material and tha chazacter of the mpeaker's voice have received rather little attantion, and are often decided on the basie of convenienco and availability of racordinga rather than realiem. Inter-liet conajatancy favourg the conatruction of phonetically balanced material at the exponse of realiatic word frequency, Wharaan diagnostic potentiality favours constructing the material on the baris of maximaliy conturible phonemes (FOSTER and HAGGARD, 1979). Differant aims motivato disability aoveasment as comparad to audiological diagnosis, but material nom not beon doveloped apecifically for the formor purposa. As ragards apeaker's voice, GENGEL and KJPPEMMAN (19日0) invantigated the effact of having the cID $N-22$ word liets read by aix different apalkerg, and conciuded that "apeakers cannot be used interchangeably if consistont performance from individuala (i.e., 1iateners) io desired". Despite thia aignificant factor, and the likelinood that it ia further compounded by listenor intaraction, it is common to tost with material read by a aingle apaaker in a monotone voice.

In particular, all previous studies of speech intelifgibility - even those that included noise at the listening end - appear to have employed speech produced in quiet conditions, so that the change in voice quality (and hence both realism and intelligibility) when the speaker is also present in noise is ignored.

Very few atudies have considered the individual characteristics of the listener, but notable in this area is that of ABEL ot al (2980) Wich demonstrated a substantial disadvantage in speech testing for those who are not fluent in the language ueed.

Manipulation of the acoustic factors in the above ligt is easier. preo-field liptening tests with the speech and noise sources spatially separated have frequently been used, see, for example, chung and rACK (2979). In an extengion of thie approach, ANIANSSON (1974) bimulated a conversation acrose the lintener as well as the speaker of interest located directly in front. Whereas the above variations have been included for realism but not evaluated factorially, the effect of reverberation on hearing-impaired inatenery has been investigated in greater dotails bee, for example, NABELSEK and ROBINETRE (1978).

Other aspects of disability which are less Erequently tested include the percoption of non-apeech bounda (FINITZD-HIEBER ot at, 1980) and the apatial arareness aspociated with the localization of sound sources (NORDLUND and FRTTKLLLL, 1953; HRUSLER ot al, 1979, GATEHOUSE and PATTEE, 1983). A comprohonaive aboessmant of disability clearly requirea the development of further testo of this kind.

### 3.3 Dtaabtitty and tmpatirment

Numerous attempte have been made to determine an exact relation between the predominant measures of impaiment and disability, i.e., the purg-tono undiogram and apeech diacrimination meore. NOBLE (1973) reviewad 23 studies of this typo and indicated that the rasults aid not consiatently astabiabh an association between tho two moasures, and that in genoral the correlations were relatively weak. Given that apeech perception involves auditory and cognitive procoseses not involved in the detection of pure tones and that thare are many appecto of impaiment besides $200 s$ of sensitivity at threshole, this observation io not particularly surprioing. For instance, ACION (1970) prasented roaulte wich auggest that people with a mild noise-induced hoaring loss in fact acoro botter in speoch inteligibility testa in noise than normals, wich he attributed to thoir greater exporionce in communicating in notoe.

The mors recent of these studias which nave included measures of Exequency selectivity and temporal resolution are aumarized in Table 2, It can be seen that the corrolatione between these individual measures of inpairment and the measure(a) of dioability are also not particularly
otrong. Significant rolationohips aro ovidont, with corrolatiot coofficionts ofton in the range $r=0.1$ to 0.8 , but the trende aro nol consibtont acrose tho otudion, $n 0$ that no goneral concluaion can be drawn. Variablo findingo amony tho atudion may rolate to the many difforencer betwoon the naturo and detall of tho teats of impaiment and dioability. the subject groups inveatigatod (noto onpocially the diffinconces betwool TYLER ot at 1982b and 1982c), or the mothod of malybing the data.

Nono of the otudion in Tablo 2 was uperifionlly deaigned to investigate. the rolationship botwoon impairment and disability. Thus, in genoral thes' havo not includes multiple corrolations of the various measures al: impairmont with a moasure of dioability. In principle, a auitable batters' of impalmont measuros should provide a prodictive rolationohip for al. loast a particular moasure of disability allungent a opncific group oi: bubjocts. In tho one partial attempt at: thise approach, TYLER ot at (1902b; found that thoir sevon moasuron of froquoncy and tomporal reaolution accounted for 89\% of the total varianco in tho scored on the PAAP tebt, with tho two prodominnt manaurog (tomporal difforonco limon and tempora:. integration at 1 kHz ) accounting for 60 of of the varianco. unfortunatoly. the audiomotric throsinnld moadures woro not incluind in this analyais.

The principal compononto analyois conductok by PESTEN ard PLOMP (1903) rovoalod rooulta moro complox than whuld purmit any concioe bumary. The acored for apooch in noiso cluntored with amo monoures of frequoney nolnctivity (tho critical bandwiath in nimultanoous manking and the low froquoncy aido of the puychoncoubtical tuning curve (PNC) in both aimultanoouo and forward mabking) but not others. The acores for opeoch in quiot cluotor with tho audiomotric threahold, the forward and backware maoking alogen and the thronhold of the click in quict. Critical ratio, and both critical bandwidth and high froquoncy oido of the PTC in forward manking appoar to bo rolated to both the offorta indicated by tho two eluotoro, whoreas tho high-frequoncy aido of the PIC in olmultancoua manking, the throshold of the click in noiso and tho width of the temporal Window aro only workly rolatod to the other moanures.
particular difficultion exiot bocauno of intorcorrelationo botwoon moanurod of impairmont. Thun, TYLER ot at (2982b) found that won tho offecta of puro tono throbhold in quint. wirn pistinliod out, tha correlatiosm ixitworn froquoncy robolution at it kizz and apeoch diaceriminntion gonorally becamo non-aignificant. in particular, BAILEY (1983) has axguod that errors by the hoaring impaired in the pinco of articulation of conoonants ( $0.9 .$, tho diatinction ixitiwinn tho voicen plosivos $b$ and $a$ as in otg and dig) may involvon nithur diatinctiona botwon tho opoctral chanyon of opsoch sounds and honce frequoncy solectivity, or moro amply the elevated thresholds of hearing at the mil2 and high Erequoncino involvod.

Tho inovitalina complaxition of ascombling a battory of moasurod of impaifmont. which could be used to prodict dibability at loast in termo of specch parcoption, roturna one to quostion the purpone of thio ondeavour. In the contoxt of handicap, it 1 s tho goarch for toata of hearing ability Which are froo from the cognitive and linguiatit: nopocto of opooch, but which roliably predict the impact of any dintormality of hoaring on opooch porcoption. With an addod roquiromont that. tilu t.mits phould bo relativoly oimplo to conduct and to porform, it would appimr that thoro in seope for the dovolopmont of a oinglo dioubility tont imami on tho percoption of spooch-1iko sounds. such a tost could in theney oncompans all the moro

Table 2: Some studies relating disability and impirment (other than hearing sensitivity). (A key to the abbreviations is given at the end of the Table.)

| Sourco | Inpairment | Diaability | neot correlation | subjecta | commenta |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { GPNGEL } \\ & \text { (1970) } \end{aligned}$ | $\begin{aligned} & \text { PD at } \\ & 0.5,2,5,3 \mathrm{ktx} \end{aligned}$ | Diocrimination of $v$ in vorda. cin (different) words | 0.5-1 (NS) (rank ardar | 5N | sciarpie (197日) reviow citer 2 othar atudien with similar high correlations but 2 more with low corrolations |
| howimg (1979) | PTC at $1 \times \mathrm{XHz}$ (metric $d_{2}$ oct) | monoryllables <br> 1. Unfilterod. <br> 2. Hiltered. | $\overline{0.7}(=+\infty)$ | 5s $\begin{aligned} & 21 \\ & 33 \end{aligned}$ | *No smonotonic relationahip* in case 1. irru and fioct rolated in a non-limer manner. Also CB found not to correlate with apeech meoren. |
| DRESCHIER <br> 4 MIONP <br> (2980) | $\mathrm{CR} \text { (CP) }$ | she (bentences) <br> 1. 8 <br> 2. H (2 matrica) <br> V dincrimination <br> in triadic cormar- <br> i <br> 1. Pl metric <br> 2. P2 mitric | $\begin{aligned} 0.6 & \text { (NS) } \\ 0.9 & \text { (*N) } \\ & \\ 0.8 & \text { (**) } \\ -0.4 & \text { (NS) } \end{aligned}$ | $\begin{array}{ll} \text { SH } & 10 \\ \text { and } & \\ \text { mixod } & \end{array}$ | Prequency remolution and trit also highly correlated ( $\mathrm{x}=0.0$ ). The metrica for SKT in N are A (related to attenuation) and D (related to diatortion), highor correlation ia with D. P1, F2 are poaitions of firat and becond formanta. |
| $\begin{aligned} & \text { DRESCRILERR } \\ & (1900) \end{aligned}$ | crat 1 kriz | As abova:$\mathbf{Q}$ <br>  | 0.3 (NS) <br> 0.2 (NS) <br> -0.1 (NS) <br> 0 (NS) | 5N 33 | Author comments that remulto overnil are in "falr* agrooment" with those abovo, but note mos-signiticant correlationa. CR also correlated with man HTLT ( $x=0.5, n=$ ) |
| pick <br> (1900) | CR at 1 kHz | cVC morda <br> 1. 0 <br> 2. N | $\begin{aligned} & 0.7 \\ & 0.4 \end{aligned}$ | patienta with flat losean 216 212 | CR correlatod with trin, at the earie froquency ( $x=0.5-0.7$ ) |
| $\begin{aligned} & \text { RITSKA ot at } \\ & (1000) \end{aligned}$ | Prc at $0.5,1,2,4 \mathrm{XHz}$ (antric $9_{\perp}$ ) | Max, aincriminaation, ps mords | Not reported | SM ('flat. audiograsan up to 60 an 1972) | "Tremendoun" epread of Aiverimination ecoron for mubjects with $Q_{10}$ ( 3. $Q_{10}$ and 1 rit corralated ( $5=-0.0$ ) for 15 earn. |
| $\begin{aligned} & \text { IyEEGARD } \\ & \text { (2902) } \end{aligned}$ | $\begin{aligned} & \text { CR at } \\ & 0.5,2,2,4 \mathrm{xHz} \end{aligned}$ | skT (monaenoc words in H ) | 0.8 | $\begin{aligned} & \text { Hosmaly } 56 \\ & +5 N \\ & +C L \\ & +m 4 \times 00 \end{aligned}$ | Corcolation besed on Cf avoraged acroas 4 (requobcien ( 40 earis). beat individual fruuency gavo <br>  $(x=0.7-0.0)$ |
| $\begin{aligned} & \text { Tyzzen of al } \\ & (2982 c) \end{aligned}$ | 1. N maoking <br> 2. T manking <br> 3. PIC <br> (3 motricu) <br> 4. Tempint <br> (all at 0.5. A khe) | PB words in N phaf morde in N | 1. -0.3 (NS) <br> 2. -0.7 (*0) <br> 3. 0.4 ("*) <br> 4. 0.3 (*) | Normale 10 <br> mrmin 13 <br> Other sn 10 | Correlationa ns at 0.5 kHR , yTh at 4 kHz corrtinter with <br> 2. $5=0.2-0.4$ (*) or ms) <br> 2. $x=0.8-0.9(=4)$ <br> 3. $r=0.4-0.7$ ( $\left.{ }^{\circ} \mathrm{F}\right)$ ) <br> 4. $\mathrm{r}=0.6$ ( F ) <br> Previousiy Thise of at (1980) rejorted atrongat correlation of apeech with moanurex 4, d. 4. |



## Ankroviationa

| A - attonuation metric (apeects) | CR - critical ratio | HTh - hoaring threatola level | SN - aenmorineural Joma |
| :---: | :---: | :---: | :---: |
| Ars - auditory tilter mhame | D - aimtortion metric (apeocti) | H - noiae | SKT - mpeech reception threaho |
| Bud $\boldsymbol{T}$ - backward makking | t - ¢ara | NS - not aignificant | TVH - texyoral diffarence lime |
| C-conmonantm | PD - Ererfuency damerimination | NVN - noige with variabla noteh | Tempint - tenporal integration |
| CB - critical bard | Pra H - Corward masking | PH - pkoneticaliy balanoed | TV - temporal wismou |
| CrW - conb-filtered noino | CD - gap ofetection | PTC - paycioacountical tuning curve | v - vowels |
| CL - conductive losis | COL - gap detection limen | Q - quict |  |

fundamental aspecta of auditory processing, whilst not testing the more variable processes involved in the extraction of meaning from patterns of auditory information.

### 3.4 Bandtcap

Following from ite definition two aspects of handicag can be distinguished. The first, and dominant, of these is gelf-perception of a disadvantaged condition. Complementary to it is the element of actual disadvantage observed or recognized by others with whom the sufferer comed into contact, without the latter necessarily being aware of it (or having adapted to this state over a period of time). The primary tool for atudying the first aspect is the self-report questionnaire. The attendant uncertainties of this highly subjective procedure hardly need atreasing, but it can be argued that in the last analysis this is the only way to olicit the information. questionnaires adminiatered by interview are ilable to reflect the attitudes of the interviewer, and some studies have been oriticized on this bcore, notably where the interview takea on the aspect of a doctor-patient consultation. The interview procedure wan advocated by NOBLE and ATHERLEY (1970). NOBLE, however, later adapted the 1970 quastionnaire for self-adminiatration by paper and pencil (NOBLE, 1979). The secondary aspect of divadvantage apparent to the aufferer's peers (if not to himself) presente obvious difficulties for investigation, and this applies also to the other posaible approach of discreat third-party observation of the sufferer's social behaviour pattorn.

The nolf-report questionnaire mothod avoida the complications of entering, or simulating, the real-lifo social environnent and is much the most widely used. Even hore thore have been rolativoly fow studies carried out on a large enough scale to permit generalized concluaions, and not all of these have been syatematicaliy validated by oubsequent application. A eynopele of the pubilived literature is givan in table 3. A varioty of taxget populationa has beon invertigated, ranging from those with all typas and levele of hearing loss to the moro apocific. Noble, for example, originally dovised his hearing mebourement scale (HMS) in the context of noise-induced hearing losa, Others have studied minority groups, for example, usors of binaural hearing aide (MARKIDEs, 1982) and employed persond with eovere acquired hearing losaes (THOMAS at at, 1982).

To dato no atandardized technique has bean evolvad for administering thene quastionnaires or for their conatruction, although it must bo admitted that it is very difficult to compose a pot of relevant quentions that can all be anewored intelligontly by such diverse groupa; alao different investigators ofton have different aims. There is a particular problem in devising questions which both the normal-hearing and the impaired can answer, but thib in a pro-requisite when the objective is to distinguioh between them, for the purpose of dafining the lower boundary to the handicapped condition. For oxampla, questions which prosume impairment on the part of respondente, or wich allude, for example, to hearing aide, eit very uneasily where that presumption is not jubtified. In a briof review of the fiela, SUTRR (1970) pointed out that anowers to questionnaires appear to depend upon age, occupation and various other factore, and it is not always clear whothar the answers ehould be interpreted in comparison to those of a peer, but unimpaired, group or by reference to young normal hearing. With regard to the age factor, gLorig

## Table 3: Some studies employing hoaring handicap queationnaires. (A key to the abbreviations in givon at the end of the Table)

|  | Soureo | measur 2mp zistrumert | surjecta |  | Carselationn | commente |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SILVEFTAKN <br> ef at (1940) | 6 Onm 5 c | pre- and post-operative (fenoatiratione) | 123 | 5idt 0.5 | SAI (fictial adequacy 2miox) 10 averago pli mord ncors at 1 unserth levals in $\square$ |
| 2 | Difuss Caratart (1962) | 26 on $\times 5$ c. 125 on on atistuon to ka | EA Ubors, AR 10-95 controld | $\begin{aligned} & 417 \\ & 155 \end{aligned}$ | - | study concermed outharion of monaural and binaural th |
| 3 | Hicht ot at (3964) | Hearing Baraticap Scate (TNS) 20 Qn $\times 5 \mathrm{C}$ in 2 verasiona $A, n$ ) | Mainly CL, As 21-72 | 50 | HTHI 0.7 <br> Sher 0.7 <br> NDS, 0.2 (NS) | Reçuitoe cooperativo roapondonta, Auscoptibla to oragperation. Mpasuros eainly monoitivity |
| 4 | BLAncpiryid <br> at al (1963) | tris ( A and F ) | Mornalen AN 27-591 <br> AR 60-62, | $\begin{aligned} & 21 \\ & 25 \end{aligned}$ | Fird in $0,0.5$ <br> Nus in N: $-0,5$ | pas moanured by firime Teat. $\operatorname{tDis}(\lambda)$ butter than Hits(8). |
|  | SPEAKS <br> -t at (1970) | fuis (A) | patients. AR 19-70, $\begin{array}{r}\text { CL } \\ \text { Mima } \\ \text { SH }\end{array}$ | $\begin{array}{r} 5 \\ 6 \\ 10 \end{array}$ | HTL. 0.7 <br> 5 KTI 0.7 <br> NIIS, -0.5 | Spoech siterials wers Ps worfs, sentences in $Q$, pontences $+\infty$ oppoting masaago. correlationt higteat for pB. |
|  | BEFKOWITL: hocithert: (1971) | HHS (A) | Non pathological <br> patiant.a, AR co-a7 | 100 | IFTL 0.6 <br> SRTI 0.6 <br> MES, -0.3 | cid W-2 worta for skT, cid w-22 warda 1 CID List B sentencos for mos, HHS reported reliable for geriatrica, |
| 7 | PETLRSS 5 HARDICX (1474) | muis (A and m) | male VA patienta, SN. An $19-65$ | 40 | H7T.1 0.6 <br> SIETI 0.6 <br> K03: -0.5 | Self-angegampht compared with tifi abveror mont by ngouso, $x=0.0$ |
| s | MECAKTNEY et al (1976) | ```IGIS (A) INS (ano stemn 16, 17)``` | Normalu, MR 60.09 | 36 |  | A myateratic ocatarinon of has and hois on <br> - gariatric population |
| 9 | SCHOM 5 <br> Tarownitid. <br> (1927) | his ( E) $^{\text {( }}$ | Normala, MA 2a <br> Hear-normalia, MA 37. <br> Pronhyacupic SN, MA gu | $\begin{aligned} & 20 \\ & 10 \\ & 20 \end{aligned}$ | HTLA: 0.7 <br> MDS, -0.2 | Catugorion of handicap proposind on banad of ints |
| 10 | $\begin{aligned} & \text { TAMBAHILL } \\ & \text { (1979) } \end{aligned}$ | Hots (both forma) | SN th candidater, AR $5 \mathrm{Sc}-41$ | 24 | STKT: 0.6 | Correlation is for pro-aided condition. study concerned prout-aidud improvement |
| 31 | brant (3979) | 1045 | 5N, AK 57-90 | 26 |  | High corrolation (r a o.64) alvo found with stagyered spondaic word teat (SEW) |
| 12 | tarlor <br> et at (1967) | 79 on $\times 4 \mathrm{C}$. gra on lip roading, bign language, upeech in N , talephono. metifgu, nolse averaion | Pemale voavert, Nith., AR 45-64 | 39 | " | pilot atudy. geaction of othnr houcehold memberat teirted trut not found usuful, |

Tablo 3 (continued)

|  | \$0urce | Whasuring inatrument | subjecta |  | Correlationn | Commonta |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | KExS et at (1971) | $20 \mathrm{gn}, \mathrm{unach} \operatorname{lad}$. Soctiona on occupational hatary, comanication difficulty, teleptione. radio/TV. mesotingl, une OR HA | Poomio weavori, Nifta, HA 64 Controln, un 64 | 96 <br> 96 | - | Largo alffarencon found botween toot and control groupo in eacti nection. |
| 14 | peaksom et al (1973) | $10 \mathrm{onks}(\mathrm{or} 4) \mathrm{C}$ senctione on ocmanication with (1) fandly/ficiands (2) atrangera; enlephone, public moeting. | 20 for motid at al above |  | HTh - various frequency combinationa. (Valuce of $x$ not given.) | -OWn asacusament considered too mubjoctive for incluaion". Criticized by Noble for retaining only apoech-rolated pas. |
| 15 | samer <br> et al (1970) | waningtan Heartng Scale 7 0n $\times 2$ C (Yea/so). hierarchical +1 on k $4 C$ | clinic clitonts | 2345 | - | Inconsiotent roaponsou cant doubt on hiererchical nature of ecale. |
| 16 | MOHLE 6 <br> atidituey <br> (1970) | Rearing Mocanuremant Scale 42 on (montly) s C sectiona on apeech heax ing, acuity for nonupeectil sounde, localization, etational reaponue, apreech distartion, tinnitua, parmonal opinion | Pouncrymen. Nith., AR $35-65$ | 46 | Hignent valuen for HTL. SKT, ROXS againnt rolevant aectiona of scale: about 0.6. | prooosied by 3 pilot atudies, originally in interviem form, dubsequently in pencil-and-patmy form (MOBter, 1979). Soe alno MOCARTNET at al above. |
| 17 | ATzEALET 6 noute (1971) | Hess | Drop toryorn, will. AR 36-5 3 | 310 | HTLL 0.7 (bant of 5 frequancy combinationa). | becoran congarus for; ha clinic attendege, drop-forgera, motal ofreaneze, veavara, |
| 14 | $\begin{aligned} & \text { LIMEEXAN } \\ & \text { (1971) } \end{aligned}$ | 7 On = $2 C$ ("complaint" <br> $=2$, no ocupplaint $=0$ ) | Foumary worknia, Nith | 642 | IFSL 2 kOHz, plonetans at 4 S/N ration. (Valuas not given an coofficienta.) | Nutherlands ptudy, |
| 19 | EWERTSTAN <br> of at <br> (1973) | Social Hearting Handicap Inder (5: <br> 21 On 3 C (yचa or mof doultr ful/dan't know or no acperiences) | Normain <br> lmpairex (all typena, oxcluaing fin ubera) | $\begin{array}{r} 25 \\ 198 \end{array}$ | Expredoed as an inequality, SHI $>0.9$ SKT | tranteh atudy, sul derived from fars. Compromive between froe choice, multipla choice. Nos difcarded an lean roliable. stet refory to paniah numaraln. |
| 20 | 日IIE: <br> mitasian <br> et al (1974) | 5 HI | HA candzdatev, AR (50-773 | 551 | Similar to gwemtsen of at ahove. | Uad to assose alded huaring izptovemont; bont reault with C.. |
| 21 | $\begin{aligned} & \text { Lown of at } \\ & (1974) \end{aligned}$ | con $\times 2-5 \mathrm{c}$ | socruits | 311 | HFI, whift un moors increment (valuas of r not givan), | Uned to ocmpare hoaring before and after o mooks banic military eraining. |

Tablo 3 (continued)

|  | Source | moaguring inutnoment | subzacta |  | Corrolations | Comberita |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | IUABIB 5 HINCHCLITPFE (1976) | $10 n \times 100 \mathrm{c}$ ( overall nubjoctive anogabsant) | patimntu (a) <br> (b) <br> NR $16 \rightarrow 00$ | $\begin{aligned} & 69 \\ & 39 \end{aligned}$ | $\begin{array}{ll} \text { Ifrl } 2 \text { kitz } & \text { (a) } 0.3 \\ \text { (D) } 0.4 \end{array}$ | (a) Lomion pampla <br> (D) Calro ample |
| 23 | GITOCHCLIFPT: <br> 4 contenar <br> (1980) | 21 gn (C not stated) sections roElecting <br>  dygecalia, pinomophobia, oya-ntervoacuals. tinniturf, vertigo | Fationto <br> AR 17-75 | 110 | HTH 2 katz 0.4 <br> (ua nypoacunia soction) | meditional gna on underatarding quantionnaire; deprivation of anjoyment, eocial alaudvantaga. |
| 24 | arovas -t al (2979) | Hearenp Performance Inventory (jati) <br> $180 \mathrm{on} \times 5 \mathrm{c}+\mathrm{c}_{\mathrm{d}} \mathrm{Con} \mathrm{t}$ Khom", <br> Soct tann on underotanding apoech. intemaity, reapones to auditory taizure, social. pertaonal, occupational | parmony with -communicative ditficulty" | 190 | No data given orcapt tipl. | Authozs noted low corrolation of this ue diecriminationy acale accordingly conetructed to entiasiza dibcrimination. sthortaned form ( 90 gn ) given by kavd at al (1993). |
| 25 | DMENS 4 TLJ!KANA (1980) | HP! | Prokoundy 1mpaized | 30 | - | Difforances betwoen aided and unalded hoaring found atatiotically eignificant on achin suctions of RPI. |
| 26 | Wanc (1981) | HPI | Veterand, AR 10.69 | 148 | HTL: 0.0 (upreech aection) <br> sKT, 0.3 (intanaity oucn.) <br> kess -0.3 (3 aectiona) | subjecto manty with mild hearing impaitrmonts. |

Abproviations

| $A_{1}$ | - alternatava forms of riss <br> - ago ranga (yr) |
| :---: | :---: |
| c | - (numbaz of) zeaponse catugoriga |
| CID | - Central Inotitute for the Deaf, st. Loujo |
| CL | conductiva lona |
| HA | - hoaring ald |
| 11015 | - Hearing thandicap scale |
| 1058 | - Mearing Mosourement Scalo |
| Hpl | - Jlearing forformaice invantoty |
| $1 \mathrm{H}_{\text {ch }}$ | - thoaring throuhold lovel (various froquencios arat combinationa) |
| M | - man ago (yr) |
| W05 | - maximin (apuoch) discrinination pcoze (various maturiala) |

```
NIH/ - nolse-induced hoaring load
NG - not oignificant
NS - not gighificant 
pB - phonet
Q - quiot (inmor of) quontions
SAI - Social Adequacy Indax
Sll - Social lloaring thandicap Index
NN - mensorineural lown
s/K - mprectr-to-noise ratio 
givt - pponch reception threnhold (50: oorrect ocota, varioum materials)
```

and BAUGHN (1973) and MERLUZZI and HINCHCLIFFE (1973) presented data wich suggest that one's expectation of hearing ability declines with age, irrespective of extraneous impairment, which could be interpreted as progressive adaptation to the increasing age-related threshold bhift. The same trend, though less pronounced, is discernible in the results of the 1954 Wiaconsin State Pair hearing burvey (GIORIG ot al, 1957). Thus a self-rating of just 'nut, handicapped' can occur at progressively greater levela of hearing impairment with increasing age.

The questionnaires used in provious studies eafibit a great diversity of approach and form. Among the many factors governing questionnaire construction those in the list below can be readily enumerated, and examples of each of these alternatives are to be found in the literature cited:

```
- interview ve paper-and-pencil adminiatration
- generalized us particularized queations
- prolix ve economical wording
- numbor of questions (examples range from 1 to 158)
- inclusion va exclusion of open-ended questions
-- provieion ve withholding of 'don't know' or 'haven't been in
    that situation' reaponse options
- abmolute ve relative judgement required (e.g., relative to the
    past, to othar persons, etc.)
- polarity of wording; negative ve poritive; uniformly ve randomly
    ortered
- frams of refezence, the queation elicite the present atato or it
    ontalls recall
- type of reaponse admitted: binary choice (yes/no) va scaled.
In the case of binary choice: parallel ve nierarchical iteme
In the case of acaled response, continumm ve discrete oteps
                    1 unimodal va neutral
                    mid-point
    : dimenaion of acale (e.g.,
                'oftennese', degree of
                difficulty, etc.)
    : end-pointe defined or open
    1 (In case of discrate stops),
        the number of categories
        offered.
```

NOBLE pointed out some leas obvious conaderations in addition to those above. For example, some oubjects will not be able to report handicap as 'Erequent difficulty' with some situations for the eimple reason that their handicap has led them to avoid being in guch aituations, He faulted one questionnaize for 'brain-teabing' and consequent aubject frustration through the mired une of positively and negatively warded questions supposediy balanced so as to average out any reoponee bias. Writing of the use of temporal ('oftennese') scaling as opposed to intenstitvo ('degree of difficulty', etc.) sealing, he advocated the former on the grounds that it induces the eubject to 'integrate experionce ovar time and come up with an aggregate': intensitive scaling (faleely) 'aseunes that exparionce is the game from time to time in a given aituation and varies only with difierent situationa'. similar arguments and counteraxguments about the minutiac of questionnaires abound in tho litarature; perhape more significant are somo marked differences in attitude to the purpose and capabilitios of the
method. HIGR ot al (1964), for example, extol the merits of gelf-report from the aspects of speed, scorability and repeatability while adding that a 'not entirely desirable aspect of the self-report scale is that it reveals handicap as viewed through the eyes of the subject'. This led them to purge their original experimental scale of all items not naving face validity in a speech comnunication context. PEARSON ot al (2973) decided that questions they had included on subjects' own assessmente of their hearing were too subjective for ultimate incluvion, and retained only four on the basis that these correlated best with speech audiomotry: there are ehades of a circular argument hers. By contrast, NOBLE (1970), BIRK-NIELSEN and ENERTSEN (1974), SCHOW and TANNAHILL (1977) and othors emphasize that a given level of impairment is no predictor of handicap and maintain that self-report over a wide range of activities 'as viewed through the ayen of the subject' is indeed the approach to follow, In this fiold, the saying 'quot nomines tot sentontiae' (there are as many opinions as there are people) seems to apply equaliy to the investigators as to those investigated. A uneful aumary of the moro important contributions to tho literatuze has been given by fardick of al (1980), and by GroLas (1983).

The asosement of behaviour in the social environment has been attempted by BIRD and TREVAINS (1978) and by THOMAS ot at (1992), aleo through the medium of quastionnaires. They atudied tho perceived effects of acquired hearing losa on the reapondents' communication pattarns, their social and work relationonips, job proficiency and job atatur. Bird and Trevains also administered a questionnaire to a colleague at work or a relative of atch respondent and found that thees generally confirmed the self-raportod difficulties. obeerved bohaviour could include direct scoring of communication ability, or an assensment of compensation mechanisms. Por instance, in the latter category, kONO ot at (1979) roported that people with NIHL and a noiay workplaco tend to nave a hichor noise exposurs at homo. with a few exceptions, however, the validation of queationnaires by observation of behaviour remaina laxgely unoxplored.

### 3.5 Hanatcap, dteabtitty and tmpatrmont

A number of gtudios shown in table 3 attempted to relate answers to questionnaires with meacures of dinability or impairment. For this to be done it is conventional to treat the handicap as though it is a acorable if not etrictly a maseurabio - entity. reducing questionnaj.re responses to numbers cortainly facilitatee the search for corralationg but it is an unavoidably arbitrary process. Scaling the reaponses on a continuum, or for example by 5 - or 7 -point ratings of 'oftenness' from 'nevor' to 'always', can be rationalizod on an extonsion of the murgtonian principle of equal discriminal diaparaion, using a non-linoar traneformation if appropriate. Handicap, howavar, neade sealing along a multitude of dimenaions and no metric principle has been ostabliehed for weighting thair relative importance. purthermore, handicap is an experionce for which each subject can contribute only ono datum, correaponding to his actual location in this multidimeneional space. In this respect it is undike certain subjective entitios (loudness, annoyance and so on) wich can be aystematically tested by varying the stimulua, and the validity of gcailing rules theroby verificd empirically. It follows that ainglo-number rating of handicap io necessarily a weak approximation. Novorthelesp nome authora havo addressed handicap rating directly os though it were a unidimensional
entity uaing a degenerate queationnaire of only one item (HABrB and HINCHCLIFFE, 1978) $)$ others, notably NOBLE (1979), highlight the essential multidimensionality of the concept while at the same time applying arbitrary weights in purauit of a single number. such simplification may be necessary if the object is to deduce from a maximum acceptable handicap rating the corresponding admissible levels of disability, thence to impaizment and finalily to noise exposure. The pressent study recognizes the logic of this aim whilst cautioning against too simplistic a reliance on a unique cause-effect relation between noise and handicap, A profile of handicap across a number of dimensions is a moze raalistic means of expreasion and is attractive in that it offerg scope for the axercise of judgoment as to which of them should determine the criteria of accoptability. Massive quantities of data would, however, be required to exploit thie advantage.
cloarly there is a need for further combined studies of diabililty and handicap to aid the interpretation of questionnaire surveys, and convargely to permit interpretation of opecific disability measures. To date the moasuros of dieability have been based upon conventional epeech audiomotry. Aa an intermediate between disability and handicap, measuran mould be developed wion have a high degree of realism and thus permit more direct intarprotation in tho context of overyday commenication. Thin would go some way towards anmwering the question identified by SUFER (1978): 'flow much epeech communication ability is needed in order to conduct the activities of daily living in a aatiafactory manner?'.

### 3.6 The onset of hanatcap and tte rolation to notse 2 thette

As we have geen, the ideal notion of setting noise limits through the medium of aimple caumemefect relatione allied to an acceptability exitorion poses intrinsic difficultien, and these would not be diepelied even if the relations were much more accurately known than thay are at present. This is not to asy that some improvement cannot be made upon present practice, for thia bases noiae limitation simply on one or other measure of hoaring aensitivity with only mom ganeral reference acrona to the way that this might be interpreted in tenus of apeech diacrimination in apecial conditions.

Present practice only gcratches at the aurface of a logical ayatem, and an Intermediate atage botwoen this and the ideal gat out above would be the development of an appropriate set of task performanco teste within tho common experience of all members of the population. It could then be inferred that the larger the masared dibability on thase taska, the greater on avarage the reaulting handicap. This is the approach that we have followed.

In addition to the numerous studien already mentioned which have inveatigated the relationship batwaon impaiment (threshold shift) and diaability (speoch dibcrimination loas), two recent contributions hava provided resulte apacific to the quention of onsat of diaability. for haaxing coneervation purposen it is the borderiine between normality and dieability rather than the higher lovoly of dinability that are of concesn, and thase two otudien are therafore of particular relevance to the pregent inveatigation.

SUTISR (1978) assesaed the intelligibility of two speecn materials (everydily mentences and monoayllables) in quiet and in noise. speech and noise were presented from two vertically adjacent loudspeakers, with the aubjectu listening under artificial monaural conditions, using the better ear. The 48 aubjecte were divided into three groupe according to the audiogram of the tested ear, and the reaulta were aubsequently analyzed only on the basis of the be groupings. The resulte are aumarized in Pigure . . The differences betwean suter's groups $I$ and $I I$ ware


Figute is Mean percent correct responasa of thras groups as a function of speoch-to-noise ratio (scores avaraged over two apesch matoriala). (After sutor, 197a)
atatiatically aignificant for threa noige conditione, but not in quiet. It 19 avident Erom the Pigure that a group of aubjecte with an avarage hearing threanold leval (HRL) acrose 1, 2 and 3 kise of 26 dB was found on mverage to be digabled for epeech heard in noise, rolative to a group with nomal. hearing (average hearing threahold lovel 3 dB on the same basis). By 'aisabled' wo mean haze a condition that is atatietically aiatinguishable from 'nomme': it doas not imply any particular degree of thia conaition,
in particular a handicapping degree. Unfortunately thia presentation of grouped rebulte does not permit a determination of the threshold of the dibability, and inferences about any handicap are difficult to draw becauce of the unrealistic lietening condition. The same data can, however, be promented in another way.

A roplotting of Sutar's results, shown in Pigure 2, indicates that the aubjecta did not really fall into three diatinct groups but form a continuous distribution of hearing threshold levels. From this presentation it could be argued that the threshold for this particular meanure of dieability is between 15 and 20 dB HTL averaged ovar 1, 2 and 3 kite. Suter's results have been represented as redefining the 'low fence' at 27 dB , but the applicability of this figure to a wider definition of dicability is open to question and in any case the data do not support tha notion of a clear-cut breakpoint.


Figuro 2: Mean percent correct responses (avaraged over two apecch materiale) for apeach-to noige ratio of approximataly o dB, an a function of hearing threahold lavel (avarage ovar $1,2,3 \mathrm{kHf}$ ), for 48 aubjacte. (Aftar Sutar, 2978)
gyoormiburg ot at (1902, 1982) asbegeed the intelligibility of putch eantences in quiet and four lovals of noige, in each case adjueting the epeach leval in an adaptive mannar to obtain a acore of s08, that ie, the gpeach recegtion threghold (SRT). The material was preaented monaurally through an earphone. The aubjocte ware 7 young pereone with normal hearing and 22 others with a noise exposuro nistory. Left and right ears ware treated eeparately. The rosulte for the three higher noiae levela aro ehown in Figure 3, where the ordinate is tha difference in ERT batween an individual noime-exposed ear and the avorago for the 14 normal ears. The authors argued that the breakpoint occurred at an average $H \mathrm{H}_{\mathrm{L}}$ of 2 s as, averaged over 1,2 and 3 kftr, and that thie corragponde to an incrage of


Figure 31 Averago hoaring lose for spoech in noise at lavois of 40, 55 and $70 \mathrm{~dB}(\mathrm{~A})$ as a function of hearing loas (averago over 1, 2, 3 kile) for 44 ears. The curve connects avorage values for hoaring loas clacses 10 dB in widh. (Aftor Smoorenburg ot al, 1981)

3 da in gRT, Uaing the game tachniquo, PLONP and MIMPEN (1979) anowed that the equivalent dianbility occurs due to puroly ago-related hearing loge at the age of about 65 years. The unspecified ages of Smooronburg ot at's noise-exposad aubjects, and the limited number of those tested, cather weaken the force of thie comparimon.

## 

The apecific focus of the present atudy is the onast of handieap rather than its later development or more sevare manifeatationa, and the experimente are deaigned accordingly, in the light of the axperionce and methods aclopted by provious workers, The following is a brief aumary of the parts of the teat procedure that has beon ovolved. Tnoy are deacribed in the hiorarchical order $i-D-A$ but for reasons that will become apparent they wers aetually adminiotered in a difforont and more complicatod ordor. A Eull deacription of the test mothod is given in Chapter 5.
impatrmont is assessad by a mhort battery of audiological teata, consiating of pure-tono aix-conduction threohold audiometry, frequency gelectivity, temporal rasolution and the off-frequency liatoning effect.

Dtsabtlity is dotormined by inaccuracy of message reception in simulations of everyday listening situations, the essential acoustical and visual elemants of listening to speech at a social gathering, over a public address aystem, and over a telephone are re-created in a laboratory setting. performance at these tegta is measured either in the conventional manner (as a percentage of the material correctily reproduced) or in terms of the subjects ability to answer questions relating to the messages conveyed. In addition, free-field speech audiometry in quiet and noise is almo adminiatered.

Handtcap is assessed by a questionnaire in three sections. Section $I$ obtains a general self-aesesement through a series of questions similar to those uned in previous atudies, Section II elicits attitudes to nine common kinds of communication situation (domsstic, social and public) in more detaily thepe include familiarity with the situations described, nelf-anopssed ability to cope, any particular difficulties encountered, and the relative importance of such difficulties in the subjecte everyday lives. Three of theag nine situations correspond to the laboratory aimulations described above. In these cases, additional questions (soction III) are administered at the ond of each correaponding aimulation test with the object of uncovering any changos in attitude to the general situation (given previously jn answer to Section if of the questionnaire) as a direct. consequence of actually expariencing a particular aituation of the same kind.

Some general obeervations on this experimental plan may be notod hare. pirstily, the nine 'beenarios' for section $I r$ of the questionnaire constituta a highly condansed selection from a much larger poesible range embracing tho factors enumerated in Chapter 3.2. The main considerationg in making thin salection were aubject toleration and the probability that mont eubjects would have gons direct experiance of most of the situations chosen, thus avoiding undue atrain on thoir imagination of the abpociated hearing difficultios. secondiy, in an ideal experiment each of thone acenarios would bo mirrored in a corresponding simulation to tent actual disability. In practice the simulations had to be reatricted to the pasaive listaning situations. ithirdly, sections $t$ and II of the questionnaira, although clansified above for aimplicity as testing handicap, also contain nome questions relating rather to disability. The latter provide a direct teat of the correspondence betwaen aubjects' melf-percaived digability and their actual performanco in threo typical oituationa. Pourthiy, we have chooen to clansify the speech audiomotry as a dieability test rather than ono of impairment, though the status of speech testo in the $[-D \cdot H$ nierarchy is open to debate, vif.thly, the tests of impaimant are not as comprohonsivo as would bo desirable but aro, again, reatricted by considerations of test duration and aubjoct tolaration. The complote tests take a jittie ovar 2 hours to adminiater and for operational reasone aro necesearily carried out during a oingle vi.nit.

To aummarize, this threo-pronged study is designod to provido tha following information:
(a) the atarting point of disability as revealed by aelf-asmonement and maseured performance in a rango of listening aituations of cominon occurrenco.
(b) the onset of self-assessed handicap and its relationship to disability as determined by the two approaches in (a), and
(c) measures of impairment of hearing which individually or in combination act as predictors of the onset of handicap.

## 5. NETHOD

This chapter describes the test method as finally implemented. In the courbe of its evolution, a number of pilot experiments were conducted with gubjects, both normal and with various impaiments. These served to refine the questionnaires, to make adjustments to the acoustical test materiale and to select optimum sound pressure levels.

Testing time per subject was of necessity restricted, and no prior experience of subjective tests could be asauned. Certain more complex procedures, such as determination of psychoacoustical tuning curves, were therefore deemed impractical.

### 5.2 Toat mothods

This sub-chapter dencribes the content of the component parta of the teats under the respective headings of impairment, disability and handicap, together with some considerations leading to the choices mado. The tosta were in practice adminivtered in a different order, deacribed in chapter 5.3. Ae will bo soen, it was a necessary part of the plan to assese the handicap by questionnaire before the subjects were given the jistening taste.

### 5.1.1 Impairment te日ts

The teste of hearing impaimment related to pure-tone hearing aeneitivity, temporal resolution and aspects of frequency solectivity respectively, as dencribed below.

### 5.1.1.1 puro-tono throahold

The air-conduction hearing threshold of each ear wan teated at $0.5,2$, 2, 3, 4,6 and 0 kHz using the se2f-recording techniqua. the audiometer was calibrated in accordance with ISO 389 AD1 (INTERNATIONAL ORGANIZATION for STANDARDIZATION, 1983) and was get to produce pulped tones of nominal duration 250 ma at the rate of 2 per second with an attenuator aweop rate of $\pm 5 \mathrm{~dB} / \mathrm{a}$ in 1 AB stepe. The recording charto were read to the nearest integor dacibel. Measured hearing threshold levels are designatesa by $\boldsymbol{F i}_{i}$ where the eubseript indicates the audiometric frequency, an average at frequencies $i$ and $j$ is indicated by aubscripts ij, etc, $\boldsymbol{i}$ a pupersoript L or $R$ in added where necespary to dintinguiah between left and right ears and the superscript LR indicaten an average over both eara. For analyais the audiometric resulte are summarized through the following indices: $\mathrm{H}_{4} \mathrm{~L}_{\mathrm{L}}$,
 averages follow UK practice in the area of hearing conbervation (BS 5330; 2976) and assestment for disability compensation purposes. High-frequency nearing 100 i in characterigad either by $H_{4}$ or by $H_{346}$, random uncertainty
bointy roducod in the gecond cisse through takjing the average, whereas $H_{4}$ is directly related to the other impaiment tests described below and permita an estimate of reliability to be made aince this measure was repeated (see below).

### 5.1.1.2 Temporal resolution

This was measured by the method of simplifled masking period patterns developed and evaluated for clinical use by zWICKER and SCHORN (1982). As illustrated in Pigure 4, the resolution measure is based on a comparison


Pigure 4: Schematic diagram of the stimuli used in the test of temporal resolution. rive signal is a pulsed 4 kHz tons, and the masker is an octavo band of random noise centred at $4 \mathbf{k H z}$.
betwoan three monaural threshold sound prassure levels, deaignatad $T$ (with subscripta) and expressad in dectbols, to $20 \mu \mathrm{pa}$ referred to the artificial ear, of a tons under the following conditions: (a) in quiet, yiolding $r_{Q}$ ( $b$ ) when masked by a continuous random noise ono octave wide contrad at the tone frequency ( $T_{C}$ ) 1 and ( $C$ ) in the same noise modulated by a bquare wave at $14 \mathrm{fty}\left(T_{M}\right)$. In each cabe a 4 kHz probe tone was used and the thresholds ware determined by tilo self-recording technique with tho tomg pislued (nominil duration 500 ms , repetition rate 1 per gecond), and tino attenuator sweeping at $45 \mathrm{~dB} / \mathrm{s}$. Tho noise in tho continuous regime was bet individualiy for each ear at a lovel buch that its one-third octavo band sound proselure level in the band centrad on 4 kHis was 43 dB above tho threahold aound pressure level of the probe tone in quiet, that is, at tho leval $T_{0}+43 \mathrm{aB}$. An axception was made when $r_{Q}$ exceeded 60 dB , in which caso $T 0+33 \mathrm{~dB}$ was nelectod to avoid excessively loud stimuli. The resulte are exprossod by means of indicos of impairmont of temporal zooolution, TH L defined by ( $\left.\Gamma_{M}-T_{C}\right) /\left(T_{M} \cdot T_{Q}\right)$ (which is zwicker and schorn's 'temporal resolution factor' with the bign raversed) and rre? dofined by ( $T_{M}$. $r_{C}$ ). Note that both these quantitios tneroaso (from
larger negative to smaller negative values) as the impairment increases. This test also yields a second estimate of $H_{4}$, obtained by subtracting from $T_{0}$ the value for 4 kHz of the raference equivalent threshold sound pressure level for the type of earphone ubed (TDH 39P/MX-41/AR), namely 12.0 dB. There was a slight difference between the conditions of test for $T_{Q}$ and that of $A_{4}$ in the pure-tone audiometry in respect of the tone pulsing rate; otherwive this is a direct replication.

ZWICKER and SCHORN's (1982) results indicated a normal range of TI-1 from about -2.3 to -0.5 , values greater than -0.5 gignifying reduced temporal resolution. The power of this method to characterize sencorineural hearing impaiment is not known precisely, but zwicker and Schorn reported significantly reduced temporal resolution at 4 kHz in a group of 20 NIHL patients.

The masking noises for this test ware generated by a Brüel and Kjaer random noise generator type 1405, set to produce white noise. Modulation was effected by feeding a 14 Hz equare wave nignal into the on/off control of the wite noise generator at the remote control input socket. The output of the genorator was connected to a Brijel and Kjaer filter net type 1615 and the filter output was magnetically recorded on a Nagra tape recorder type iv D. A recording of 1 min duration was made for each of the three conditions, this being sufficient to obtain accurate threghold determinations. The 50\% duty cycle of the modulated noise resulted in a sound progeure level oxactly 3 de below that of the continuous noise for the same setting of the controls. Thie was verified acountically with the aid of the artificial oar and an integrating bound levol meter.

### 5.1.1.3 Froquoncy solocttvtty

This was dotermined using a notched-noive masking technique, the principle of which is as follows. If the threohold of a tone is measured When masked by a broad-band noise of uniform spectral density, the seloctivity of the auditory filtor is indicated by the critical ratio (CR), defined as the difference between the threshold sound pressure level of the tone and the sound prossure spectrum lovol of the noise at and around the tone frequency. A degraded auditory filter having, say, twice the normal bandwidth will yield a critical ratio 3 ab above nomal, but this increment is ecarcely large enough for accurate experimental observation. The aensitivity of the teat is greatly incresed if, instead of uniform apectrum noise, ono substitutes a noise having a notch in ita spectrum centred on the test tone frequency. In these circumatancea doubling the bandwidth of the auditory filtor may raiso the tone threshold by as much as 20 dB comparad to nomal. patmirison ot at (1982) auggested a vory bimple frequency aelectivity teat based on thiel it conaiata aimply of measuring the threahold of a k kilz tone in the preaence of broad-band noiso at a opecified jevel having a defined aymetrical noteh in its opectrum centred on 4 kfis. However, this method shares one of the objections to a conventional critical ratio determination, namely that it does not separate the effect of liatening officiency from that of frequency belactivity por so, although, of course, it has the advantage of enhanced sanaitivity. Thif olojection can be overcomo in principle if a third measurement is made, nemely the threahold of the tone masked by a noige which ia the same as the notehed noise but with the notch absent, that is, a broad-band uniform spectrum noise, The difference between the masked threshold levels in the uniform noive and the notched noise reopectively ohould eliminate the
eflect of liatening officiency provided the aubject does not change his criterion of datection. Each of these methods was used in the present Lesta.

The tone gignal used was identical to that in the temporal resolution test describod above. The noise maskers were derived from tape recordings provided by Dr R.D, Patterson and prepared following the procedure he described (PATMERSON, 1976). The uniform noise was presented to subjects at a fixed sound pressure spectrun level $N_{\text {fis }}=37$ dB (defined relative to $20 \mu \mathrm{~Pa}$ and a 1 Hz bandwidth) unless $H_{4}$ for the ear being tested exceeded 50 dH HTL, in which case $N_{\text {fs }}$ was raised by 20 dK. The notched noise was presented at the corresponding level, such that the sound pressure spectrum level remote from the notch was the same as for the uniform noige. Magkers were presented uninterruptedly throughout the threshold determinations.

One of the requisite data, namely the quiet threshold, $T_{0}$, was already to hand from the previous temporal resolution tevt. $\mathrm{I}^{\text {ne }}$ additional measurements required were the threshold sound pressure levels of the 4 kHz tone under the following conditions: (a) masked by the uniform broad-band noise, yielding $T_{\mathrm{B}}$, and (b) masked by the notched noise ( $T_{N}$ ) ( b ) rigure 5). Indices of frequency selectivity were obtained from the three measurements as follown: rs-i defined aimply by the value of $\mathrm{I}_{\mathrm{N}}$ in the manner of patterson, and an alternative index FS-2 defined by ( $T_{N}-T_{H}$ ). moth FSid and FS-2 increase with increasing impaiment, although all values of $\mathrm{FS}-2$ are inherently negative.


Figure 5: Schematic diagram of the gtimuli used in the test of frequency balectivity. 'The gignal is a pulsed 4 kiz tone and the maskers are alternatively a broadband randoin noise and the same noine with a notch in the spectrum controd on $s \mathrm{kHz}$. Mabkers are maintained continuourly tinroughout tho threbinold dotarmination. Por the teats of off-frequancy listening only the low (h) or high (H) part:a of the notchod noine spectirum are reproduchd.

In addition the measurements yielded two estimates of the critical ratio: (i) CR-1, for octave-band masking noise, defined by $T_{C}-N_{t r}$, where $N_{t r}=L_{t r}-29.5$ di is the sound pressure apectrum level of the octave-band noise used in the temporal reaolution test) and tur is its one-third octave band sound pressure level in the band centred on $4 \mathbf{k H z}$, and (1i) CR-2 for broad-band noise defined by $T_{B}-N_{f s}=T_{B}-37 d B$, IThe constants 29.5 and 37 dB represent reapectively the one-third octave bandwidth (relative to 2 Hz ) of the noise used in the temporal resolution test and the sound pressure spectrum level of the noise masker in the Frequency melectivity test. As with the other indices already deacribed, CR-1 and CR-2 both tncreaso with increasing impairment.

### 5.1.1.4 Off-frequancy $2 t a t e n t n g$

The off-frequency liatening effect is a subjective compensation of the centre frequency of the auditory filter to optimize detection (PAIMERSON and NIMM-SMITH, 1980). The effect is ithibited in the frequency selactivity teat using the notched noise masker but can be revealed by preeenting separatoly each of the constituent bands of the notchad noise. Monsuras of benefit of off-frequency listening are provided by comparing the throsholds under these conditions with that obtained with the Whole notened noige, Viz., (a) OP-L defined by ( $T_{L}-T_{N}$ ), and (b) OP-H, defined by ( $T_{\mathrm{H}}-T_{\mathrm{N}}$ ), where $T_{\mathrm{L}}$ and $T_{\mathrm{H}}$ are respectively the threshold sound pressura lavele of the probe tone when only the low ( 0.8 to 2.8 kHz ) and high ( 5.2 to 7.2 kiz) paxts of the noite ppectrun are present as maskera. In prineiple both $O P-L$ and $O P-H$ will have negative values, and the maller the magnitude of the negative number the greater the impaiment of the facility for utilizing the off-fzequency effoct to enhance detection of the eignul, that to, both OP-H and OF-L increase with increasing impaiment of thise faculty. For a aymotrical filter centred on the teat tone frequency, removal of either of the conotituent bands ehould result in a downward change of at least 3 dB in the threshold level of the tone an compared with the whole notched noise. The downward change ghould be bubstantially gronter than this when off-frequency listening is oporative. The values of of-t and ormb bhould accordingly have an upper bound of -3 dB, xopresenting total absence of off-frequency listening capability. In practice, smaller negative values, perhapa penetrating the low pogilive range, might bo expected duo to measurement uncertainties.

### 5.1.2 Disability tegte

The testo of hearing diability, consisting of three simulated liotening situations and the free-field epeech audiometry, are deecribed pelow.

### 5.1.2.1 stmulatod soctal gathering.

This roprasentad the aituation of an individual liatening to another person as part of a face-to-face convarsation, with another pair of persons conducting a goparate convereation across the first, all of wich occurs in a babble of ather talkers and some background music. On the basia of information presunted by pLomp (1977) it wan decided to set the combined leval of the crosa-convermation, babble and music at approximately 70 dB(A), wich is typical for a "cocktail party" in a domeatic living zoom. The relative levela of the competing atimuli were aet by trial to avoid one or other being unduly prominant.


#### Abstract

The speen material of primaty interest to the lastenar consisted of names, addresuss, dind 7 digit telephone numbers drawn from british telephone directories. Entries were initially selected at random. An entry was retained if it was in the format of name, initial, houne number, street name, town and telephone number; otherwise it was rejected and another drawing made. A set of sone 50 entries of this format was compiled. 'This material has particular value for present purposes on a number of count.s. Firstily, there are items within each entry that have widely diffoing probabilities of occurrence: thus, the spoken form of the cardinal numbers unes only 28 words for numbers up to 1000 ; telephone numbers, as spoken in standard uk practice, use a vocabulary of only 12 words (the numbers one to nine, plus "0", "double" and "thousand"); at the other extreme, surnames and street names are drawn from a much larger (and rather open-ended) vocabulary; the list of town names is long, but not as long as that of surnames, and has a somewhat greater in-built redundancy. Secondly, the material is ropresentative of factual information that might. be transmitted at a social gathering. Thirdly, and perhaps most. important, it permits some interpretation of the consequences of mis-hearing any particular word or item; for instance, an exror in any of the 7 digits of the telephone numbers renders the whole string worthless; similarly for errors in the first lettor: of a surname when searching a telephone directory; by contrast. thus identifier of a street as Road, Street, Way, Grove, etc., and the latter part of a surname, may often be corrupted without loss of identity in these circumstances.

The teast was comprosed of 20 telephone directory entries, 5 spoken by each of 4 people whose native lançuage was english but with some regional variation. fin the 17 st ot material shown in Appendix $\Lambda$, the speakers are i.dentified as JB, MS, KII and DR, the first two being female. Video renordings of a much larger corpus of material read by these speakers were made at the televiaion studio of the Department of reaching Media at the Universaty of Southamption. The recordings were made with a Hitachi colour camera type fp. 21, a Panasonic recorder type NV 9600, and a Sony lapel microphone type EOM 50 . Special attention wan yiven to the lighting conditions and to tho sound recording technique to dvoid any unnatural video or autaio colourat.ions.


The speaker faced towards the video camera and read rach item from an adjacent monitur. The monitor screen also indicated when the speaker should commence aath itom (nams, stront: adilross, town and telephone number) the timing having been predetermined to allow for written reaponses without unduly slowing down the proceedingis. Each di rect.ory ent.ry took about 1 min to read. overhead, side and floor lighting provided thadow free conditions for the video recording. 'The framing of each speaker was such as to obtain a hada and bhoulder image, approximately lifesize on the television sersen used in the testis.

Both ears of sach speakne were filted with a behind the ear tinnitus masker, Viennatone type AM/Ti, protucing a broadband noise. The lovel. was adjusted by pilot trials to produce an average elevation of. speech proculuction level equivalent. to lwitus in a froe-fictu speech babble of $70 \mathrm{~dB}(\mathrm{~A})$. Tho tinnitus masker was not. visible to tho camera. The purpore in oreating a noisy taiking anvironmont in this indiefot manner, rather than have the thilker in actual room nouse, was that it provided a notse-free recording for subsequent. investigation at various speech- to noise ration.

The cross-conversation was provided by a stereophonic recording of a radio play, with extended pauses and sound effects edited out so as to ensure a continuous flow of interchanges between two female voices.

The speech babble was provided by repeated overlaying of separate recordings of 4 persons each reading at a constant voice level from a novel. Two separate 12 -voice babbles were composed and reproduced from two separated sources in the test room.

The music consisted of material from an LP gramophone record featuring a five-piece jazz group. It was edited before re-recording, to ensure a fairly constant sound level. Solo passages, noticeably louder or bofter sections, and extended pauses were deleted.

In the test presentation of the audiovisual material, the equivalent continuous A-weighted sound pressure levela $L_{\text {Aeq }}$ of the constituent audio elementa, measured at the location of the subjects' heads in the free sound field, were as follows:

The three interfering sounds combined to provide a nominal background level of $70 \mathrm{AB}(\mathrm{A})$, and the primary material was therefore presented at a speech-to-noise ratio of +2 ab.

### 5.1.2.2 Publtc address announcements in a concourse

This simulation was achieved by a stereophonic presentation of tape recordings made at various locations around the concourse at waterloo railway station. The public address system consists of a large number of loudspeakers located on the walls of the concourse. It is common experience that intelligibility of announcements is poor in some locations around the concourse. Ihis is probably due to the highly reverberant conditions inside the building, the large distances, and, in some locationa, due to the line-of-sight to the nearest loudspeaker being obacured.

The tape recordings were made using an Aiwa stereo microphone type $\mathrm{CM}-\mathrm{Z7}$ feeding a Sony portable cassette tape recorder type rc-D5M. From the corpus of material recorded, ten items were finally selected to provide a range of intelligibility, to contain material auitable for the evaluation of comprehenaion by direct questioning and to nighlight the element of unexpectednoss. A transcript of the key pasaages of the ten items is given in Appendix B, along with the 14 questions and their correct answers. It should be noted that some of the information given over the public address
would in real life also have been available on tho departure and arrival display boards or printed timetables but in these cases the questions wers selected and plikaged so that correct answars were unlikely to be known on the basis of prior infomation alone (items 1,3 and 5). other items contained information of a kind which would only be publicized over the public address syatem (items 4, B).

The format of the test tape consisted of an introduction followed by the questions and the relevant recorded material, and a short interval to permit the answer to be written down. In 4 cases (items $4,9,9,10$ ) the material was preceded by two questions, in the remainder by one only. The introductory material and the questions were read by one of the authors (PAW). The material recorded at Waterloo was reproduced in the tont room at the same level as that where it was recorded, and in terme of the equivalent continuous A-weighted sound presaure level over the duration of each announcement this varied considerably, from 57 to $72 \mathrm{~dB}(\mathrm{~A})$.

### 5.1.2.3 Ctatenting over a tolophono

This was sinulated for conditions where both opeaker and listener are in a noigy enviroment. The speech material used was a further 20 items from the material recorded for the simulated social gathering (see Appendix c), Tho audio track of the video recording was replayed through an artificial mouth, Brüel and Kjaer type 4216, into a telephone handset attached in the notmal position to the mounting fixture. The artificial mouth was located in the speech babble described in Chapter 5.1.2.1, sot to a leval of $70 \mathrm{~dB}(A)$, with the speach material reproduced at a lovel equivalent to the correctad equivalent continuous value of $12 \mathrm{~dB}(A)$ used in the simulation of the social gathering. The mixed spesech and noise gignal was transmitted over a tolephone line and the electrical signal which would nomally drive the earphone in the receiving-end handaet was recorded on a Sony portable caseette tape recorder type TC -DSM, A cogy of tinis recording was thereafter used to drive tho earphone for the listening teats.

The teata wore conducted with tho subject holding the handset to tho gar of theif choice while sitting in the sank speach babblo as degcribed in Chapter 5.1.2.1. Por simplicity, side-tone of the local noise at the listening and was not provided. In quiat conditions this omiobion would not have given a aatiafactory aimulation, and hotsmes ot al (1903) have reported that eide-tone can evan have an adverse offect on epeoch intolligibility whan tho liataner is in noise, However, informal tegts wora carried out at the Britian Tolecom Research Laboratories in connection With the present atudy and ghowed that the offect is less important when both opeaker and listener are in noise at the levels used in the prosent telophono listening simulation.

### 5.1.2.4 Froo-ftold spooch audiomotry

This teat was administered using eight selections from the ISVR recording of tho Boothroyd $A B(S)$ word lists (see Appendix $D$ ). The material was presentod at oach of thres apeech lovele, correaponding to 30,45 and 70 ds squivalant continuous A-weighted sound preseute loval (after correction for silent intervals botwoen words), with the speach at 70 dB (A) also prosented in the presence of the speech babble alzeady described. Ali.
four conditions were repeated for each subject, as indicated in Appendix 0. The resulting eight conditions were presented in a fixed order, in conjunction with the same word lists for all subjects.

### 5.1.3 Handicap and self-reported disability

These aspects were tested by the questionnaire method, The questionnaires of the various authors referred to in Table 3 (Chapter 3.5) were scrutinized with a view to being utilized in the present study, as this would have given the advantage of direct cross-reference to published results. None of them however, appeared to be suitable unless modified considerably. The principal reason for this is the small-to-moderate (essentially sub-clinical) levels of impaiment that are of interest in the present target population. We therefore devised an instrument suited to the purpose. Many of the questions and the form of questionnaire construction are novel, but the content draws on previous studies in various aspects.

The prospective target population and the circumstances of test dictated decision on some of the factors listed in chapter 3.4. In particular, the interview method was ruled out and the time factor imposed a limit on length. It was decided to include questions both of the genoralized kind (Section I) and the particularized kind (Section II), giving the opportunity to compare the日e approaches.

Section I (Hearing in General) consists of 14 questions, with reaponas categories that vary both in type and number according to the nature of the question.

Por Section $I r$ (Hearing in Typical Situations) it was decided to present a series of broadly similar, but not identical, sub-questionnaires, one for each of the nine situations tested. Within each of these, identified as A-J, a variety of response acales was used, including a 'temporal' acale (for familiarity with aituatiion) and an 'intenaitive' acale (for degree of difficulty), these two being comnon to all nine situations. The zemaining questions (on particular aifficulties, reactions to auditory failings, and degree of perceived disadvantage) were varied according to the aituation. Categories of 'not applicable' were included, Where appropriate, and open-ended responses were invited as an option in aome places. We hoped by these devices, and by laconic phrasing, to encourage and maintain respondents' interest and attention to the task in nand. It appears to us that long check liats of questions in identical format tend to strain the language and appear contrived. Whilst easy to score they can make unreasonable demands on the patience and imagination of subjacti. Por our prospective population, interest in the tests would be the only reward. Each sub-questionnaire was accompanied by a verbal description prominently placed at the head of the page, and by a photograph to reinforce subjects' awareness of the situation they were being askad to rospond to.

Both Saction $I$ and each part of section II contained certain quentions testing dicability and others testing handicap. This permits a comparison to bo made between the results for the two aspecte, and alao a correlation between the perceived disability and the performance at the simulations.

Section IIf of the questionnaire (Reaction to simulated situations) consists of throe sub-questionnairos, for the situations ( $B, C$ and $G$ ) corresponding to this simulations degeribed in Chapter 5.1.2. The purpobe was to that the percoived realism of the simulations and to offer gubjects an opportunity to modify their corresponding Section II responses if tho experience of the sjmulations moved them to do so.

The full text of sections $I$, II and III of the questionnaire is reproduced in Appendix $E$, The procedure of administration is described in Chapter 5.3 and the method of scoring in Chapter 6.

### 5.2 Exportmontal arrangomants, oqutpment and caitbratton

Tho experiments were conducted in the Occupational Deafness Laboratory of the $t S V R$, located in a house at 62 University Road. The laboratory comprises a test room havjing dimensions $4.3 \times 3.6 \times 2.5 \mathrm{~m}$, an adjacent control room and an ISVR-built audiometric test booth.

### 5.2.1 Impaiment tests

Ithe tests deacribed in Chapter 5.1 .1 were conducted with the subject seated in the booth, uging equipment located adjacent to it. pure-tone threaholds ware measured witl a Kamplex audiometer type ach-C interfaced to an XYT recorder, Kamplax model AG3. Por the tests of temporal resolution and frequency selectivity, an external oscillator provided the 4 kHz signal 208 an external input to the audiometor, and the masing noises wers probented via tho audiometor from a Perrograpl geriea 7 tape recorder.

Prequencies of the audiometor test tones were checked periodically with a racal digital frequency moter type SA 520, and tho output of each earphone was measured at a hearing level dial setting of. 60 ds by means of an artificial ear, Briust and Kjast type 4153. tha earphones ware relephonics typa TDH $39 p$ with $M X \sim 41 / \beta R$ cushions, fitted to circumaural noino-oxcluding muff.s (Amplivox Audiocups). The muffa were detached from the earphonev for all measurements on the artificial ear. The audiometer was calibrated using tho referenco equivalent threshold sound pressuro levela given for this arlificial ear in rso 389 ADl. Since the ACA-C audiometer doen not have independent trim potentiometers for lefi and right channala, smajl corroctions wero necessary to the measurod hearing threshold levels at frequencies whoro the two earphones wrse not perfectiy matchad. ithe frequencies of the test tones ware accurato within is or botter of the nominal valuss and atablo to better than tirib.

Leval settinge for the external signal.s ware made, in the first instance, by adjusting gain controls to give the requigite sound presbure lovels in the artificial ear. Thereafter they ware monitored by alectrical moaburementa at the tape recorder output, for greater convanienco. In the case of the masking noises (witich wote all sequentialily recorded on ons tapo) a 4 kHis calibration signal recorded at the beginning of the sanu tape sufficed for the eloctrical check measurementis, periodically tine acoustic output of the earphones was checkad on the artificial ear for the external signals, using a Brial and Kjanc frequency analyare type 21.21 and filter set type 161.5 in tho one third octavo band mode. The band sound prossuro gpogtra of the masking noiaes differed slight.ly fizom tho corresponding
spectra of the electrical signais since no equalization was provided for the frequency response of the earphones. The latter were flat within $\pm 0.7 \mathrm{~dB}$ over the range 0.25 to 2.5 kHz but deviated by $\pm 3.5 \mathrm{~dB}$ between 2.5 and 7 kHz , giving rise to slight humps in the noise spectra in the 3.15 and 6.3 kHz bands and a slight depression around 5 kHz . Measurement of the spectrum of the modulated octave-band noise showed it to be exactly 3 dB below that of the parent noise, reflecting the $50 \%$ duty cycle of the aquare wave modulation. For all measurements on the artificial ear, the rof 39p earphones were applied with the appropriate static force ( 5 N ). The equipment used is shown in table 4.

### 5.2.2 Diaability tasts

For the tests described in Chapter 5.1 .2 the subject was seated in the approximate centre of the teat room, as bhown in Figure 6. Furnishings in


Figure 6: Schematic diagram of the layout of the test room
the room included two cupboards, a get of ghelves, curtaina, wall-to-wall carpet, a chair of adjuntabla height and back support for the subject, and a amall writing table. The reverberation time of the room was between 0.50 and 0.6 s gover the frequency range 125 Hz to 4 kij . Six loudepeakers were located and oriented in the teat room as illustratad in Figuzo 6. Loudepeaker cabinote LS 2,3 and 4 wore mounted on stande with tho centre line of their cones at the nominal ear height of 1.15 m . Loudepeaker cabinets LSS and 6 wore mounted on vibration isolation pada on the floor,
 losated benabth the tolnovision set at a height of 0.00 in. 'me forward axis of this loudspeaker was tilted upwards at an angle of $14^{\circ}$ go that the axis passed through the nominal centre position of the subject's head, while keeping the distance between this point and the front of the loudgpeaker the same as that for LS 2,3 and 4 . Ithe location of IS 1 was concealed by the use of loudspeaker screening cloth (rannoy srown). The height of the television set was adjusted so that the mouths of the speakers in the video malerial of the gosial gathering simulation were at the same height as the subject's eyes ( 1.15 m ).


Figuris 7: Schematic diactram of. the equipment used for the simulations and the froe- fiold sperch andiomet.ty

The equipment used for running the simulations was located in the control room. The schematic arrangement is shown in Figure 7 and the equipment is listed in table 4.

For routine monitoring of the sound sources, a half-inch condenser microphone (Bruiel and Kjaer type 4165) and pre-amplifier were mounted vertically on a tripod and positioned with the diaphragra at the nominal centre position of the subjects' heads, with the writing table temporarily removed. The measurements were made with a Brijel and Kjaer frequency analyzer type 2121, the overall syatem being checked daily with a pistonphone. During the diaability tests the microphone and tripod were moved to a convenient position and used to drive an amplifier and monitor loudepeaker in the control room. Routine monitoring of the levela of speach babble, crosb-conversation, music and target opeech were made with the frequency weighting $A$ and time weighting $s$, by meane of eegments of pink random noise recorded at the beginning of each of the tapes carrying these aignals. Levels ware read to the nearest half decibel and the gains of the various channela raxely required adjusting.

Moasurements of the component parts of the sound used in the eocial gathering' and 'public concourse' simulations were made with a Briel and Kjaer intagrating sound level meter type 2218 in the A-weighted 'thaq' mode, with the microphone in the same position as that occupied by the centre of the subjects' heads. In the case of the speech material consiating of names and addresses and word lists, the measurements were made over a complete presentation and then corrected upwarde by $20 \log (T / t)$ where $T$ is the total measurement period and $t$ is the ostimated summed duration of the speech utterances. In the case of the public announcements, which consisted of connected speech without aignificant pauses, each item was measured over ita actual duration and no correction was necensary.


```
Impai_ment tegts
Magnetic tape recorder: Ferrograph, series 7.
Signal source: Wavetek synthesizer/function generator, type 171.
Frequency metar: Racal, type SA 520.
Audiometer: Kamplex, type Ac4-C (automatic recording) equipped with
    ABNF interface.
Earphones: Telephonics type TDH 39P with MX-41/AR cushions, contained
    in Amplivox Audiocups.
Recordar: Kamplex, type AG3 (interfaced to audiometar).
Frequency analyzar: Bruel and Kjaer, type 2l2l.
Artificial ear: Bruel and Kjafr, type Al53 (complying with IEC 318),
    with microphone type 4134 and greamplifier,
Filter set; Bruel and Kjagr, type lifl5.
```


## Disability tobts

```
In tast room (see Figure G)
Colour IV receiver (IVV): sony type KV 2204 UH.
1oudspeakers (ISI-1,S4): Jrordan watts 300 mm gingle driver type Janet. Ioudspeakers (ISS-ING): frannoy \(365 / 50\) nm dual concentyic type HPD 385A. Telephone (T): Subscriber set type \(I / D C O / 703\) with transmitter, STC type 4050k: 71/2. and receiver, S'rC type 4042w4 70/2.
In control room (scee Figure 7)
Video cussette player (Video): Sony U-matic, type vp-1210.
Audio cassetce players (Cass 1 and 2): griAC, type A-100,
Attenuatozs (Al-A4): Hitfield \(100(x \mathrm{~J})\) dth, types 2120 and 2125. Cofstrol unit (Q33): Quad, type 33.
Fader: ISVR construction with 6 slide potentiometers.
Fower amplifiers (Q303/J-3): Quad, type 303.
IV monitor: Sharp televisjon receiver (b/w), type 32p-37H. Magnetic taye recorder (F): Ferrograph, series 7.
For sound field calibration/monitorina
Microphone: Hriel and Kjaer, half-jnch condenser type 4165.
Integrating elound jevel neter: Irued and Kjaer, type 22.18.
```


### 5.3 Genaral protocol

Subjects were booked i.n advance (singly) for participation in the experiment with a brief explanation of its purpose and the types of teat involved. On arrival at the Laboratory, each subject completed a Registration and Consent Form (Appendix F), and then completed Sections I (Hearing in General) and If (Hearing in Typical situations) of the Questionnaire. These were gelf-explanatory and were completed in most cases without any specific supervision from the experimenter. However, any querien were discussed and any additional verbal comments by the aubjects were noted on the questionnaire forms. In addition to the loose-leaf questionnaire pages, a folder was provided which contained the some pages for refexence and in addition 9 black and white photographs each of wich illustrated one of the situations.

Auditory teats then commenced with the first gimulation. The gubject was seated in the test room with the table moved to a comfortable position, and given a pen, clip board and the appropriate answer oheet for that simulation. At the end of the simulation, the relevant page from section II of the questionnaire was returned to the subject with the written instruction shown in Appendix $G$ and an invitation to make changes, if any, to the oarliex responses, using a different coloured pen. The subject was then given the relevant page from section III of the queationnaire (Reaction to Simulated Situations). This procedure was repeated twice more, with the three simulations occurring in the fiked ordor social Gathering (B), Public Address (C) and Telephone (G). The eubject then performed the free-field speech audionetry test.

At this stage the session was interrupted for a refreshment break of approximately 15 minutes. On resumption, the subject undertook the togts of impairment in the fixed order: pure tone audiometry, temporal resolution, frequency selectivity and off-frequency listening.

The total duration of each test session was approximately two and a quartor hours. The complete series of testa, in order of performance was as follow:

1. Regietration, general quebtionnaire on relevant medical and environmental hiatory; congent form.
2. Questionnaire section 5 , Hearing in General ( 15 questions).
3. Questionnaire section II, fearing in Typical Situations (in 9 parta, A - J, sach with 4 or 5 questions) (see Appendix E).
4. Simulation of social gathering (corresponding to part B of 3), followed by questionnaire section $\operatorname{III}(B)$.
5. Simulation of announcements in public concourse (corresponding to part C of 3), followed by Questionnaire section III(C).
6. Simulation of telephone listening in a noisy place (corresponaing to part $G$ of 3 ), followed by questionnaire section III(G).
7. Free-field speech audiometry in quiet (at three speoch levels) and in noise of $70 \mathrm{~dB}(\mathrm{~A})$ (speech-to-noise ratio +2 dB ), two word liate in oach condition.
8. Interval of 15 ininut.en.
9. Puro tone audiometry.
10. Temporal reaolution, frequency selectivity and off-frequency listening tests (test material recorded consecutively on one magnetic tape).

## 5.4 subjecta

Subjects with normal hearing wero recruited from staff and students of the university. Full results were obtained from $20(13 \mathrm{M}, 7 \mathrm{~F})$ with a mean age of 22 Yr . These were selected on the basis of the absence of anty medical history of hearing disorder and undue exposure to occupational and recreational noise. This otologically normal group of young peraons will bo referred to as YN .

Subjects with a significant noise exposure were located partly from records of the audiology clinic of ISVR (2), partly by personal contact (5) and pactly through local advertigement (17). At the time of compiling this report a net total of 24 noise exposed hearing-impaired aubjecta ( 23 M , 1 (F) had provided complete sets of results. A number of othera were tested but only those were retainud who were free from a history of otological dibozder (excopt for ono who had once received medical attention for an car infection). Theas covered a wide age range ( 21 to 62 , mean $45 y 5$ ). This group will be referred to as noiae-impajred, NL, but aince they do not form a homogenrous group with respect either to age or occupational noiso hiatory thoir results are treated for the most part on an individual basia.

To provide a further basis of comparison, a group of 10 otologically normal older perbons (group oN) was also tested. These were gelected on the samo criteria as group YN.

Desirably a lacger number of noise-impaired subjects would have been tested, to permit stratificatrion by age. In the event, expectations of obtaining larger numbers from tho pay-roll of local industrien did not materialize, and the location of suitable aubjects was also impeded by the fact that cases of advanced or gevere hearing loss wero not considered buitable for the purposes of the study; also a practical limit was imposed by tho distance of prospective subjects' domiciles from the university.

## 6. RESULTS

### 6.1 Mothod of prosentation

Results for the young nozmal group YN are considered first, in terms of 55 measures derived from the tests. These are then normalized by expreseing individual results as deviations from the yN group mean, measured in standard deviation units, Values for each individual of the NI group are then expressed on the same scale. The measures are grouped as $I, D$ or $A$, and correlations within and between each of these classes are performed.

### 6.2 Rosulte for normal-hearting group WN

### 6.2.1 Pure-tone audiometry

The results of pure-tone audiometry are given in table 5 as read to an accuracy of 1 dB from the self-recording charts. At the foot of each colum the mean and standard deviation are shown, together with the conversion to true hearing threshold level after correction for the audiometer calibration. In common with other studies of otologically normal young persons, the mean values appear slightly negative at mid-frequencies ( $2,34 \mathrm{kHz}$ ) and slightly positive at 6 kHz . This has bean argued (ROBINSON of ol, 1979) to bo an artefact of the ro reference audiometric zero rather than a departure from otological normality, and on thie basis the present group can be considered very close to normal.

Table 5: Results of pure tone audzometty (Group YN)
Subject Aye/arax Ear $0.5 \quad 1 \quad 2 \quad 2 \quad 3 \quad 3 \quad 4 \quad 6 \quad 3 \mathrm{kHz}$


The last row of Table $V$ is in error. The values of standard deviation should read: $\begin{array}{lllll}2.4 & 2.4 & 2.0 & 1.9\end{array}$

### 6.2.2 Temporal regolution and critical ratio for an octave-band masker

The values of TI-1 and TI-2 (see Chapter 5.1.1.2) obtained using the continuous and modulated (gated) octave-band noise masker and a 4 kHz probe tone are given in Table 6 , which also shows the values of the critical ratio CR-1 (see Chapter 5.1.1.3) obtained with the continuous octave-band masker.

Table 6: Results of temporal resolution and octave-band critical ratio tests (Group YN)

| Subject | TI-1 |  | TI-2 (dB) |  | CR-1 (dB) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 8 | L | R | L | R |
| 1 | -0,67 | -0.76 | -8 | $-13$ | 26 | 28 |
| 2 | -0.92 | -0.56 | $-12$ | $-10$ | 28 | 26 |
| 3 | -0.54 | -0. 0.77 | -7 | $-10$ | 18 | 21 |
| 4 | -0.67 | -1.17 | -4 | -7 | 18 | 23 |
| 5 | -0.69 | -0.67 | -11 | -8 | 26 | 28 |
| 6 | -0.42 | -0.67 | -5 | -6 | 26 | 23 |
| 7 | -0.44 | -1.08 | $-7$ | -1.3 | 2.7 | 28 |
| 8 | -0.41 | -0.77 | -7 | $-10$ | 22 | 26 |
| 9 | -0.41 | -0.27 | $-7$ | -4 | 21 | 21 |
| 10 | $-0.91$ | $-0.64$ | -20 | -9 | 28 | 21 |
| 11 | -1.54 | -0.64 | -17 | -7 | 30 | 24 |
| 12 | -0.54 | -0.47 | $-7$ | -9 | 18 | 26 |
| 13 | -0.94 | -0.64 | -35 | -9 | 24 | 24 |
| 14 | -0.13 | -0.85 | -2 | $\cdots 11$ | 21 | 28 |
| 15 | -0.60 | $-1.00$ | -12 | -1.3 | 25 | 26 |
| 16 | -0.69 | $-1.07$ | -11 | --15 | 33 | 34 |
| 27 | $-1.00$ | $-0.50$ | -15 | -10 | 23 | 23 |
| 19 | -0.86 | -0.75 | -19 | -9 | 24 | 24 |
| 19 | -0.64 | $-1.17$ | -. 9 | --14 | 23 | 27 |
| 20 | $-2.15$ | -0.25 | $-15$ | -3 | 9 | 16 |
| Mean | -0.71 | -0.73 | $-10.5$ | $-9.5$ | 24.0 | 24.9 |
| SD | 0.32 | 0.27 | 5.0 | 3.2 | 4.2 | 3.0 |

The values of $T I=1$ and $T I-2$ are derived from the self-recorded threshold traces read to an accuracy of 1 dB . Values of the critical ratio CR-1 are given to the nearest decibel, based on the mean calibration of tho ayatem for tho 4 kfiz probe tone and the mean measurement of the noise apectrum, in each cage using the Briel and Kjaer artificial ear type 4153.

A comparison is mado in Table 7 between the values of $H_{4}$ obtained by pure tone audiometry and $7 \%$, the threshold sound pressure level of the 4 kHz probe tone used in the temporal resolution teat. The expected duferonce ( $r_{Q} \cdot H_{4}$ ) is 12.0 dB , this being the RETSPL value for 4 kHz used in calibrating the audiometor.

Table 7: Comparison of threshold acterminations at 4 kHz

| Signal source | Measure | Threshold sound pressure level, mean of 20 ( dB re $20 \mu \mathrm{~Pa}$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | L | R | LR av. |
| Audiomater ${ }^{(1)}$ | $\mathrm{HA}_{4}+12$ | 13.1 | 10.1 | 11.6 |
|  | SD | 6.2 | 5.2 | 5.1 |
| Probe tono ${ }^{(2)}$ | P\% |  | 12.9 | 12.5 |
|  | SD | 9.5 | 6.7 | 7.5 |
|  | Difference | 1.0 | -2.8 | -0.9 |
|  | SD | 6.1 | 4.0 | 5.2 |

(1) Tone pulsed at 2 yer second
(2) Thne pulaed at: 1 per accond

The resulta of the two threahold measuremants agree on average within 0.9 dB , the higher value being obtained with the longer pulsea,

### 6.2.3 Prequency selectivity, off-frequency listening and critical ratio for a broadband masker

The values of $\mathrm{FS}-1, \mathrm{FS}-2, \mathrm{OP}-\mathrm{L}, \mathrm{OF}$, H and CR -2 (see Chapter 5.1.1.3) obtained using the constant level broadband and notched noise maskers with a 4 kFtz probe tone are given in rable 8.

Table $\mathrm{B}_{\text {: }}$ Results of frequency selectivity and off-frequency listening tests, and broadband critical ratio, in decjbels (Group YN)

| Subject | PS - 1 |  | FS-2 |  | OF-E |  | OP-H |  | CR-2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L | R | L | R | L | R | L | R | L | R |
| 1 | 42 | 40 | -23 | -25 | $-7$ | -5 | -10 | -5 | 30 | 30 |
| 2 | 35 | 35 | -29 | -29 | -4 | -7 | -5 | -9 | 29 | 29 |
| 3 | 30 | 31 | -25 | -27 | -7 | -2 | -7 | -9 | 20 | 23 |
| 4 | 36 | 35 | -19 | -20 | -6 | --7 | -9 | -9 | 20 | 20 |
| 5 | 37 | 39 | -23 | -24 | -7 | -4 | $-12$ | -7 | 25 | 20 |
| 6 | 40 | 33 | $-18$ | -22 | -2 | -6 | -10 | .-.8 | 23 | 20 |
| 7 | 41 | 40 | -19 | -23 | -4 | -10 | -8 | $-8$ | 25 | 28 |
| 0 | 34 | 36 | -24 | -26 | -9 | -7 | $-7$ | -.9 | 23 | 27 |
| 9 | 30 | 30 | -23 | -25 | -4 | -4 | -6 | -6 | 18 | 20 |
| 10 | 44 | 29 | -18 | -22 | -6 | -8 | -29 | - 8 | 27 | 16 |
| 11 | 34 | 35 | -26 | -27 | $-4$ | -15 | -9 | -9 | 25 | 27 |
| 12 | 30 | 34 | -30 | -26 | -8 | -4 | -10 | -9 | 25 | 25 |
| 13 | 32 | 28 | -28 | -30 | -4 | -7 | -10 | 6 | 25 | 23 |
| 14 | 31 | 34 | -27 | -26 | -9 | -5 | -2 | -6 | 23 | 25 |
| 15 | 44 | 35 | $-17$ | -26 | -6 | -9 | $-15$ | -9 | 26 | 26 |
| 16 | 54 | 40 | -16 | -25 | -3 | -4 | $-23$ | -5 | 35 | 30 |
| 17 | 30 | 30 | -30 | -30 | -5 | 0 | -5 | $-5$ | 25 | 25 |
| 18 | 33 | 38 | -26 | $-10$ | $-7$ | -4 | -11 | -10 | 24 | 13 |
| 29 | 44 | 40 | -20 | -23 | -6 | -5 | -14 | -13 | 29 | 20 |
| 20 | 31 | 30 | -26 | -25 | -7 | -6 | $-11$ | -12 | 22 | 20 |
| Mean | 36.6 | 34.6 | -23.4 | -24.5 | -5.7 | -5.9 | $-10.1$ | -8.1 | 24.9 | 24.2 |
| SD | 6.5 | 4.0 | 4.5 | 4.3 | 2.9 | 3,1 | 4.9 | 2.2 | 3.9 | 4.7 |

Comparison of the critical ratio determinations (Tables 6 and 6 ) genorally shows a good agreement, with a significant correlation of individual ecores (left, $r=0.732$; right, $r=0.683$; contbined, $r=$ 0.601 ) although the difference exceeds 5 dB in three eara. The moan diffarence (aignlese) is 2.4 dB , Both measures should agree for normal hearing since bandwidths of both maskers, though different, greatly oxceed the normal auditory critical bandwidth at 4 kHz , eatimated in tho iiteraturo (LYREGARRD, 1982; TYLER et at, 1982C; HAWKINS and STEVENS, 1950) to be of the order $330 \pm 100 \mathrm{~Hz}$ depending on test conditione. Tho mean value of $C R-1$ and CR-2 for 40 ears in the present tests yields a critical bandwidth estimate of 290 Hz ,

## 

G.2.4.a social potinertig

The resulta of this simulation were scored by the number of errors (out of a possible 20 ) for each component of the name-and-address format, viz.,

1. The j.nitials
2. Tlie surnime
3. The nouse number
4. Tha street name
5. The atreet classifier (Road, Avenue, Close, etc.)
6. The town name
7. The first 3 digits of the telephone numbar
B. The last 4 digits of the telaphone number

The resultiz for individual subjects are given in Table $9 . \quad$ Coluinns headed 1,..日 give actual numbers of ertors in the above categories, the final column is the total numbur of mrifors made, expressed as a percentage of the total number of items in the test, $i . e, 160$ ( 20 namma, etc., each with 9 components).

Talsle $9:$ Results of gjmulation of social gatheximg (Group $Y N$ )

| Subject | Ericocis pric componant |  |  |  |  |  |  |  | Total errors (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | H |  |
| 1 | 1 | 5 | 0 | 4 | 1 | 1 | 0 | 0 | 7.5 |
| 2 | 2 | 4 | 1 | 7 | 0 | 4 | 0 | 2 | 12.5 |
| 3 | 0 | 5 | 0 | 7 | 2 | 5 | 0 | 1 | 13.1 |
| 4 | 0 | 6 | 0 | ¢ | 0 | 5 | 0 | 3 | 12.5 |
| 5 | 0 | 5 | 0 | 2 | 0 | 6 | 0 | 0 | 8.1 |
| 6 | 0 | i | 0 | 4 | 0 | 1 | 0 | 1 | 7.5 |
| 7 | 0 | 10 | 1 | 9 | 2 | 4 | 0 | 5 | 1.9 .4 |
| 8 | 1 | 10 | 2 | 8 | 1 | b | 1. | 3 | 21.3 |
| 9 | 2 | 7 | 1 | 3 | 2 | 4 | 0 | 3 | 13.8 |
| 1.0 | 0 | 3 | 0 | is | 1 | 3 | 1. | 0 | B.8 |
| 11. | 1 | 5 | 0 | 2 | 0 | 5 | 0 | 1 | B. B |
| 12 | 1 | B | 0 | 12 | 1 | 5 | 0 | 3 | 1\%.5 |
| 1.3 | 5 | 1.3 | 1 | 1.3 | 4 | 10 | 5 | 6 | 35.6 |
| 1.4 | 0 | 9 | 1 | 4 | 0 | 5 | 0 | 2 | 12.5 |
| 1.5 | 0 | 3 | 0 | 3 | 1 | 4 | 1 | 1 | 8.1 |
| 1.fi | 0 | 4 | 0 | 15 | 1 | 4 | 0 | 0 | B.8 |
| 1\% | 0 | 5 | 0 | 5 | 2 | 2 | 0 | 3 | 10.6 |
| 18 | 1. | 8 | 0 | 5 | 0 | 6 | 0 | 4 | 15.6 |
| 19 | 1 | 5 | 1 | \% | 1 | 4 | 0 | 1 | 11.9 |
| 20 | 2 | 5 | 0 | 7 | 1. | 4 | 1. | 0 | 12.5 |
| Maran | 0.85 | 1. . 1.5 | 0.40 | 5.95 | 1.00 | 4.65 | 0.45 | 1.95 | 13.3 |
| SD | 1.73 | 2.54 | 0.69 | 2.45 | 1.02 | 2.10 | 1.15 | 1.76 | B.E |

The fairly high overall mean error score of $13 \%$ shows that the desired condition of appreciable but not severe difficulty for those with normal hearing was attained. The mean, however, conceals a wide range of individual performance and one subject ( $F$, 19 yr ) scored nearly 5 times as many errors as subjects 1 and 6 ( $M, 23$ yri $M, 21$ yr). The errors were, as expected, mainly concentrated in items 2 (surname), 4 (street name) and 6 (town name), the overall error rate for these items being 29\%. In contrast, the overall error rate for all numerals, initials and atreet classifiers was under 5\%, reflecting the limited 'vocabulary' of such items.

### 6.2.4.2 Unexpected announcements in a public concourse

The results of this 10 -part simulation were scored as 14 items (questions 4, 8, 9 and 10 were in two parts). Exact reproduction of the wording of the announcements was not required, only an accurate comprehension of the messages, and the data sheets were marked accordingly. Half-scores were awarded where the gist of a message was correctly conveyed but nevertheless was not wholly accurate.

The results for individual subjects are given in Table 10. Columns headed $1 . \ldots$ lob are actual numbers of errore on each question ( $0,0.5$ or 1)) the final column is the total number of errors made, expressed as a percentage of the total number of messages (14).

Table 10: Results of simulation of announcements in a concourse (Group YN)

| subject | Errors in each question |  |  |  |  |  |  |  |  |  |  |  |  |  | Total errors <br> (5) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 a | 4h | 5 | 6 | 7 | 8a | 8b | 9 a | 9b | 10a | 10 b |  |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7.1 |
| 2 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0.5 | 0 | 1 | 32.1 |
| 3 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14.3 |
| 4 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 28.6 |
| 5 | 0 | 0 | 0 | 1 | 1 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17.9 |
| 6 | 0 | 0 | 0 | 1 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.7 |
| 7 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 35.7 |
| 8 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 21.4 |
| 9 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 28.6 |
| 10 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0.5 | 0 | 0 | 1 | 0 | 1 | 1 | 46.4 |
| 11 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21.4 |
| 1.2 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 35.7 |
| 13 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 50.0 |
| 14 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 28.6 |
| 15 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 35.7 |
| 16 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21.4 |
| 17 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 25.0 |
| 18 | 1 | 0 | 0 | 0.5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 25.0 |
| 19 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 10.7 |
| 20 | 0 | 1 | 0 | 1 | 0.5 | 0 | 1 | 0.5 | 0 | 0 | 1 | 0 | 0 | 0 | 35.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  | Mean |  | 26.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  | SD |  | 11.5 |

'mus dufficulty of the itrms in this simulation turnod out to be very variable, no errors at. all being made on questions 3 and 8 (first part) as against about $75 \%$ incomprehension of questions 4 (both parts) and 6 . Subjects also varied widely, with subject 13 again scoring most errors and subjects 1 and 6 again acoring least (in the ratio of about 7 to 1 ).

### 6.2.4.3 Listenting on the telephone in a notsy place

The reaults of this simulation were scored in exactly the same way as the social gathering, and are given in Table 11.

Table 11: Results of simulation of listening on the telephone (Group YN)

| Subject | Errors per component |  |  |  |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 日 | errors (8) |
| J | 11 | 5 | 0 | 3 | 0 | 3 | 0 | 0 | 13.8 |
| 2 | 11 | 16 | 6 | 16 | 6 | 15 | 6 | 10 | 53.8 |
| 3 | 1 | 4 | 1 | 3 | 0 | 1 | 0 | 0 | 6.3 |
| 4 | $]$ | 0 | 0 | 7 | 0 | 5 | 2 | 2 | 35.6 |
| 5 | 0 | 9 | 0 | 7 | 0 | 5 | 0 | 0 | 13.1 |
| 6 | 3 | 7 | $]$ | 11 | 0 | 6 | 0 | 1 | 18.1 |
| 7 | 2. | 8 | 0 | 6 | 1 | 6 | 0 | 1 | 15.0 |
| B | J | 8 | 0 | 4 | 0 | 4 | 0 | 2 | 11.9 |
| 9 | $\bigcirc$ | 9 | 0 | 7 | 1 | 5 | 0 | 0 | 13.8 |
| 10 | 1 | 7 | 0 | 4 | 1 | 7 | 0 | 0 | 12.5 |
| 11 | 6 | 10 | 0 | 8 | 0 | 7 | 0 | 2 | 20.6 |
| 32 | 3 | J 2 | 0 | 7 | 0 | 12 | 0 | 2 | 22.5 |
| 13 | 0 | 8 | 0 | 3 | 0 | 5 | 0 | 0 | 10.0 |
| 34 | 2 | 6 | 0 | 9 | 0 | 5 | 0 | 1 | 14.4 |
| 15 | ] | 10 | 0 | 6 | 0 | 5 | 0 | 0 | 33.8 |
| 36 | 1 | 9 | 0 | 5 | 0 | 4 | 0 | 1 | 12.5 |
| J\% | 2 | 9 | 0 | 9 | 0 | ] 4 | ] | 0 | 21.9 |
| 18 | 0 | 9 | 0 | 10 | 0 | - | $]$ | 0 | J7.5 |
| 19 | ] | 9 | 1 | 9 | 0 | 4 | 0 | 0 | 15.0 |
| 20 | 3 | 10 | 0 | 7 | 0 | 7 | 0 | 1 | 36.3 |
| Mean | 2.40 | 8.65 | 0.45 | 7.05 | 0.45 | 6.40 | 0.50 | 1.25 | 16.9 |
| SD | 3.25 | 2. 5.2 | ]. 36 | 3.17 | 1.36 | 3.53 | ]. 40 | 2,23 | 9.5 |

Ertor acores in this (monaural) tast were slightiy higher than in the simulation of the gocial gathering, for which the tegt material was of axactily the ame kind. Errors were distributed among the 8 componenta of the nime/addresss/numbrar in much the bame way, averaging 36.8\% for the difficult ones (aurname, stroet. name, town name) ngaingt 58 for the easy ones (numerals, etc.). The only notible differenco is that subjects had more teouble with initials in the case of the telephone listening in noise
(although the average error rate was still relatively low on this item, at 12\%). Remarkably, subject 13 performed very well on this test, ranking second whilst subjects 1 and 6 were only average, An exceptionally high error rate was scored by subject 2 ( $M, 24 \mathrm{Yr}$ ) who was about average on both the other simulations, there was no obvious reason for this.

### 6.2.5 Pree-field gpeech audiometry

Each list consisted of 10 CVC words and errors were scored out of 30. Lists were presented in the order $1 \ldots . .8$, with 1 and 5 at $45 \mathrm{~dB}(\mathrm{~A}), 2$ and 6 at $30 \mathrm{~dB}(\mathrm{~A}), 3$ and 7 at $70 \mathrm{~dB}(\mathrm{~A})$ (a.ll these in quiet), and 4 and 8 at $70 \mathrm{~dB}(\mathrm{~A})$ in noige (babble) providing +2 dB speech-to-noise ratio. For ease of reference the results are given in Table 12, paired as above, in order of ascending difficulty.

Table 12: Results of free-field speech audiometry (Group YN)

| Subject | Number of errors per list |  |  |  |  |  |  |  | Av. errors in |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $70 \mathrm{~dB}(\mathrm{~A})$ |  | $45 \mathrm{~dB}(\mathrm{~A})$ |  | $30 \mathrm{~dB}(\mathrm{~A})$ |  | $\begin{aligned} & 70 \mathrm{~dB}(\mathrm{~A}) \\ & +\mathrm{noige} \end{aligned}$ |  | quist | noise |
|  | 3 | 7 | 1. | 5 | 2 | 6 | 4 | 8 | $\begin{aligned} & 1-2-3- \\ & 5-6-7 \end{aligned}$ | 4-8 |
| 1 | 1 | 0 | 0 | 0 | 6 | 2 | 2 | 2 | 5.0 | 6.7 |
| 2 | 5 | 4 | 0 | 1 | 4 | 4 | 8 | 5 | 10.0 | 21.7 |
| 3 | 0 | 0 | 0 | 2 | 0 | 2 | 8 | 3 | 2.2 | 18.3 |
| 4 | 0 | 0 | 0 | 2 | 7 | 4 | 9 | 4 | 7.2 | 21.7 |
| 5 | 0 | 0 | 0 | 2 | 12 | 6 | 5 | 4 | 11.1 | 15,0 |
| 6 | 0 | 0 | 0 | 1 | 7 | 7 | 5 | 3 | 0.3 | 13.3 |
| 7 | 2 | 1 | 0 | 1 | 2 | 10 | 10 | 6 | 8.9 | 26.7 |
| 0 | 0 | 1 | 3 | 1 | 2 | 1 | 4 | 0 | 4.4 | 20.0 |
| 9 | 3 | 0 | 0 | 1 | 9 | 9 | 9 | 10 | 12.2 | 31.7 |
| 10 | 0 | 1 | 0 | 2 | 1.2 | 5 | 5 | 3 | 10.6 | 13.3 |
| 1.1 | 0 | 2 | 0 | 0 | 2 | 4 | 6 | 3 | 4.4 | 15.0 |
| 12 | 1 | 1 | 1 | 4 | 12 | 7 | 10 | 10 | 14.4 | 33.3 |
| 13 | 0 | 1 | 0 | 1 | 0 | 0 | 6 | 8 | 1.1 | 23.3 |
| 14 | 0 | 2 | 2 | 9 | 3 | 1 | 1.2 | 11 | 9.4 | 38.3 |
| 15 | 0 | 1 | 2 | 2 | 2 | 14 | 7 | 9 | 11.7 | 26.7 |
| 16 | 0 | 1 | 0 | 1 | 9 | 2 | 3 | 4 | 7.2 | 11.7 |
| 17 | 0 | 1 | 1 | 2 | 5 | - | 7 | , | 9.4 | 16.7 |
| 18 | 0 | 1 | 0 | 0 | 4 | 2 | 9 | 6 | 3.9 | 23.3 |
| 19 | 0 | 1 | 0 | 3 | 9 | 5 | 1.0 | 3 | 9.4 | 21.7 |
| 20 | 0 | 0 | 0 | 0 | $\epsilon$ | 0 | 9 | 2 | 3.3 | 18.3 |
| AV. <br> arrora (8) <br> sD | 2.0 | 3.0 | 1.5 | 5.7 | 18.7 | 15.5 | 23.8 | 17,8 | $\begin{aligned} & 7.7 \\ & 3.6 \end{aligned}$ | 20.0 7.0 |

The reaults indicate that the lists were not of equal intrinsic difficulty, in particular list 1 appears to be appreciably easier than list 5. The other paics also show some differences. For these nomal subjects, the intelligibility it $70 \mathrm{AB}(\mathrm{A})$ in noise was comparable with that at 30 $\mathrm{AB}(\mathrm{A})$ in quiet.

In order to characterize the performance of individual subjects and minimize random error, the six resulte in quiet and the two results in noise have been averaged, and are given in the form of percentage errors in two right-hand columns of Table 12 respectively. The grand averages and standard deviations in these columns should not be compared directly, but are used separately as the basis for evaluating SAQ and SAN indices for the non-normal groups respectively.

### 6.2.6 Queationnaires

### 6.2.6.1 Section I: Hearing in genaraz

The initial method of gcoring for this section was to award 22 pointa to each question (excluding $Q n, 14$ on ube of ear protectors in occupational noise, which was not scored for group $Y N$ ). Within each queation, the responses were scored 0-3-6-9-12, 0-4-8-12 or 0-6-12 according to whether there were 5, 4 or 3 "boxes". Qn, $\theta$ was scored 0 for "No", 6 for a "Yes" unless followed by "I need it louder", in which case it scored 22, Ihe free rasponne parts of $2 n a$, a and 9 were not acored, and "not applicable" was scored 0 where thia option was selected.

The questions were classified as relevant to $D(1,2,3,4,7,10,12)$ and $H(5,6,8,9,11,13,15)$ reapectively, accorting to the intent of the quastiona. In one or two cases the classification has been found retronpectively to be slightly ambiguous (Qn. At "Do you think other people notice that you have any problems with your hearing?", Qn. 9: "How do you get on with hearing the sounds of daily life?"). As will be been, the results are not sensitive to the minutiae of classification of aingle quertions.

Tables 13 and 14 give tho results for each subject under the headinga of $D$ and $H$ respectively. It is imnediately apparent that the questions produced a widely varying rango of mean responBes from group $X N$. In particular, queation 1.1 ("In converbation with people that you don't hear vary well., do you ask them to copeat what they saidp") evoked a migh response score suggesting that this intended "reaction to auditory failura" was not construed as implying handicap. Three of the handicap quentions (5, 6, 13 ) and digability question 4 evoked no response from the normal groug, wich is predictable. Question 2 ("Is your hearing getting worse?") should be in the same catagory but one abbject (male atudent, aged 20) gave "blightily lase good", and the same aubject also gave the minimum non-eero reaponse to question 1.5 which atrictly applied only to tinnitus after works these responses must bo considered idiosyncratic. somewhat surprisingly only $B$ out of 20 considerad their hearing "perfect" ( $Q n .1$ ), and majority reportod "pometimas" having "to make a special offort to hear thinge" (Qn. 3). Instant diaectional parception was claimed by only 8 out of 20 (Qn. 7). Quastion 1.2 was intendad to distinguish botween senaitivity and percoptive diaability. Nong of the subjects admitted the latter but 11 out of 20 acknowleaged some difficulty hearing other people if "they don't gpeak loudly enougil".

Table 13; quostionnaire Section I: Group yN individual scores on disability questions

| Subject | Score on each question |  |  |  |  |  |  |  | Total Ecore as \% |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 7 | 10 | 12 |  |  |  |
| 2 | 3 | 0 | 0 | 0 | 4 | 0 | 0 |  | 8.3 |  |
| 2 | 0 | 0 | 4 | 0 | 4 | 4 | 0 |  | 14.3 |  |
| 3 | 3 | 0 | 0 | 0 | 0 | 0 | 6 |  | 10.7 |  |
| 4 | 3 | 0 | 0 | 0 | 4 | 4 | 6 |  | 20.2 |  |
| 5 | 6 | 0 | 4 | 0 | 4 | 4 | 6 |  | 28.6 |  |
| 6 | 3 | 0 | 4 | 0 | 4 | 0 | 0 |  | 13.1 |  |
| 7 | 3 | 0 | 4 | 0 | 4 | 0 | 6 |  | 20.2 |  |
| 0 | 3 | 0 | 4 | 0 | 0 | 0 | 6 |  | 15.5 |  |
| 9 | 3 | 0 | 4 | 0 | 4 | 4 | 0 |  | 17.9 |  |
| 10 | 0 | 0 | 4 | 0 | 4 | 4 | 6 |  | 21.4 |  |
| 11 | 0 | 0 | 4 | 0 | 0 | 4 | 6 |  | 16.7 |  |
| 12 | 3 | 0 | 4 | 0 | 4 | 4 | 6 |  | 25.0 |  |
| 33 | 0 | 0 | 0 | 0 | 4 | 0 | 6 |  | 21.9 |  |
| 14 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |  | 7.1 |  |
| 15 | 3 | 4 | 0 | 0 | 0 | 0 | 6 |  | 15.5 |  |
| 26 | 6 | 0 | 0 | 0 | 4 | 0 | 0 |  | 11.9 |  |
| 37 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |  | 4.8 |  |
| 18 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |  | 4.8 |  |
| 19 | 3 | 0 | 4 | 0 | 0 | 0 | 0 |  | 0.3 |  |
| 20 | 0 | 0 | 4 | 0 | 4 | 0 | 0 |  | 9.5 |  |
| Av, score (8) | 28 | 2 | 22. | 0 | 20 | J 2 | 28 |  | 14.3 |  |
|  |  |  |  |  |  |  |  | SD | 6.5 |  |

Thble lf: Quastionniare Section I: Group YN individual scoxes on handicap questions


Further consideration of these results is deferred until the corresponding data for the impaired groups are presented,

### 6.2.6.2 Section If: Bearing in parttcular sttuations

The questions attached to the nine situations were classified, as above, under the headinge of $D$ and $H$. The $A$ category included, for each situation, a question relating to "reaction to auditory failure", and, in the case of situations $A, B$ and $D$ only, a question on "now much it matters" if there are hearing difficulties (the second question was only applied to the sj.tuations judged to be of fairly comuon occurrence).

[^0]In situations $A, C, D, E, F, H$ the response boxes were in the same sequence an the points awarded, in situation $G$ the first two options were rated equal, but above the third option, the fourth and Eifth options were rated successively higher (steps of 15 points in this cage). "Not applicable" and freo-range responses were scored zero. In addition to tho "familiarity" woighting from Qn. 1 , a further weighting was applied in calculating the composite scores over all questions in both the $D$ and $A$ categories: questions $J 4(i n \operatorname{D}$ ) and $A 4, A 5,85, H 4$ and $J 5$ (or 6) were weighted 0.5 and all remaining questions were weighted 1 , baged on a judgement of the comparative importance. It is recognized that these adjustmente are rather arbitrary but some equalization of contributions fxom different gituations appeared to be appropriate. The weighting (0,5 or 1) is already applied to the data tabulated below.

Tables 15 and 16 give the results for each bubject under the headings of $D$ and $A$ reapectively, Responees are tabulated before the application of tho multiplying factors, w. In the final column the subject'a total scoro is given as a percontage of the maximum possible acore, with $w=3$ for ali quentiona, At the foot of each individual column, the mean percentage score is shown. These values are unweighted and therefore not directly related to the grand average scores at the foot of the last column in both

Table 15: Questionnairo Soction II: Group YN individual acores on Alsability questions


(Table continues)
*The woight $w$ is the response to question 1 for each gituation. scorea on the remaining questions are given bofore application of this weighting factor.

## Table 15 (cont'd)



Trable lif: Quostionatre section [t: froup YN individual scores on handicap quastions

| Sul jeret | $A$ |  | B |  | Score on each question* |  |  |  |  |  |  | Weighted |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | c |  |  | $E$ | F | G | H | $\checkmark$ | total |
|  | 4 | 5 |  |  | 4 | 5 | 4 | 3 | 4 | 4 | 4 | 4 | 4 | 5/6 | score (8) |
| 1 | 1.5 | 10 | 40 | 0 | 20 | 40 | 20 | 0 | 30 | 30 | 15 | 15 | 30 |
| 2 | 15 | 20 | 20 | 20 | 20 | 40 | 20 | 20 | 0 | 15 | 15 | 0 | 26 |
| 3 | 30 | 20 | SO | 20 | 20 | 40 | 20 | 20 | 30 | 30 | 15 | 15 | 36 |
| 4 | 30 | 20 | 20 | 20 | 40 | 40 | 20 | 20 | 45 | 15 | 15 | 0 | 37 |
| 5 | 1.5 | 10 | 20 | 1.0 | 20 | 40 | 20 | 20 | 30 | 15 | 30 | 15 | 29 |
| 5 | 15 | 10 | 20 | 10 | 40 | 0 | 0 | 20 | 0 | 1.5 | 0 | 0 | 19 |
| 7 | 1.5 | 10 | 20 | 20 | 20 | 40 | 20 | 20 | 30 | 15 | 0 | 15 | 28 |
| B | 1.5 | 20 | 20 | 20 | 20 | 20 | 20 | 0 | 30 | - 15 | 15 | 0 | 28 |
| 9 | 1.5 | 10 | 40 | 10 | 20 | 40 | 0 | 0 | 30 | 15 | 15 | 0 | 28 |
| 1.0 | 1.5 | 10 | 20 | 10 | 40 | 20 | 0 | 20 | 30 | 15 | 15 | 0 | 25 |
| 11 | 30 | 1.0 | 40 | 1.0 | 40 | 40 | 20 | 20 | 45 | 1.5 | 15 | 15 | 32 |
| 12 | 15 | 20 | 40 | 30 | 50 | tio | 40 | 0 | 45 | 30 | 30 | 0 | 45 |
| 1.3 | 1.5 | 1.0 | 20 | 1.0 | 20 | 40 | 0 | 0 | 0 | 15 | 0 | 0 | 18 |
| 1.4 | 1.5 | 1.0 | 20 | 30 | 20 | 40 | to | 20 | 30 | 15 | 30 | 15 | 46 |
| 1.5 | 0 | 0 | 20 | 1.0 | 40 | 20 | 0 | 20 | 30 | 0 | 1.5 | 0 | 20 |
| 1.6 | 30 | 0 | 0 | 10 | 20 | 40 | 0 | 20 | 0 | 1.5 | 15 | 15 | 22 |
| 1.7 | 0 | 10 | 40 | 0 | 20 | 50 | 0 | 60 | 60 | 15 | . 5 | 0 | 37 |
| 1.8 | 0 | 0 | 20 | 0 | 20 | 0 | 0 | 20 | 0 | 15 | 0 | 0 | 10 |
| 1.9 | 1.5 | 0 | 0 | 30 | 20 | 40 | 0 | Bo | 30 | 15 | 15 | 0 | 26 |
| 20 | 15 | 0 | 20 | 10 | 40 | 40 | 0 | 0 | 0 | 30 | 1.5 | 0 | 24 |
| Mupan |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (8) | 52 | 33 | 42 | 43 | 47 | 58 | 22 | 30 | 41 | 29 | $4 \%$ | 1.8 | 28.2 |
|  |  |  |  |  |  |  |  |  |  |  |  | SD | 日. 8 |

* 

Tables. They serve to give an indication, however, of the freedom with which the scales were used by subjects. percentages are in all cases based on the maximum possible.

Inspection of trables 15 and 16 reveals suxprisingly high percentage scores on some questions, notably C2 (i.e., public address announcements not usually clearly heard) and D3 (i.e., usually ignore a casual remark if not properly heard). The "handicap" questions generally attracted higher scores than the "disability" questions (28\% against 20\%), whilst the coefficients of variation were nearly the same (30\%, 318). Pamiliarity with the situations was rated on average between "sometimes" and "often" for all situations except $F$ (formal meeting around a table) and was greateat, rather unexpectedly, for H (talking to a clerk through a grille).

In order to facilitate comparison between the perfornance in the mimulations (Chapter 6.2.4) and self-assessment by questionnaire, the relevant portions of the latter are extracted in Table 17. The "bocial

Table 17: Questionnaire Section II: Group XN results for situation $B$ and situations $\mathrm{B}-\mathrm{C}-\mathrm{G}$ combined, for disability and handicap quentions

| Subject | Percentage score (weighted) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Situation B |  | Situatione B, C, G |  |
|  | D | H | 0 | H |
| 2 | 21 | 30 | 1.9 | 29 |
| 2 | 19 | 30 | 22 | 24 |
| 3 | 19 | 59 | 24 | 41 |
| 4 | 19 | 30 | 22 | 30 |
| 5 | 19 | 22 | 24 | 21 |
| 6 | 29 | 33 | 20 | 34 |
| 7 | 56 | 30 | 36 | 24 |
| $\theta$ | 29 | 44 | 23 | 30 |
| 9 | 42 | 56 | 25 | 35 |
| 20 | 28 | 22 | 38 | 29 |
| 11 | 19 | 37 | 18 | 33 |
| 12 | 29 | 78 | 25 | 62 |
| 13 | 29 | 33 | 21 | 28 |
| 14 | 19 | 37 | 25 | 29 |
| 15 | 42 | 33 | 21 | 27 |
| 26 | 28 | 7 | 24 | 14 |
| 17 | 12 | 44 | 38 | 33 |
| 18 | 29 | 22 | 27 | 21 |
| 19 | 19 | 15 | 22 | 17 |
| 20 | 29 | 33 | 28 | 41 |
| Mean (8) | 26.5 | 34.8 | 25.1 | 30.0 |
| 30 | 10.6 | 15.9 | 5.8 | 20.3 |

gathoring", "public sddross announcoments" and "]istening on the telephone" aro mirrored by situations $B, C$ and $G$ of the Questionnaire section $I f$ cespectively, fistening to speech in noise (as in the free-field audiometiry, Chapter 6.2.5) may be compared with situation $B$. For. completeness the $B$ and $B-C-G$ questionnaire results are given both for the $D$ and $H$ categories, although it might be expected that correlation with the simulations would be higher with $D$, since the simulations do not depend on the handicap as such. The scores are weighted as already described.

It will be recalled that the answer shoets for three of the situations ( $B, C, G$ ) were returned to subjects after experiencing the corresponding simulations. A fow subjects availed themselves of this to revise one or more of their previous questionnaire responses. The alterations were ignored in scoring the results, but some general inferences from them are discussed later.

### 6.2.6.3 Soction IIt: Reaction to stmulated stiuations

Reforring to Appendjx $E$, responses to this section of the questionnaire are coded 1-2-3-4-,... according to the box or boxes ticked for each question. Free responses where this option was exarcieed (for exampla, "Other" for Qn, 1 of the simulation of a social gatherj.ng, and "Any other comment?" for Qn. 4 of this simulation) are coded $x$, and no response is coded NR,

Qn. 3 of simulation 3 is coded 1 for right-handed subjects, that is, thone writing with the right hand and holding tho telephone in the left; conversely it is coded 2 for the left-handed. on. A is coded 1 for those who normally hold the telephone in the game hand as used for the teat, 2 for tho contrary (mpaning that the test was awkward for them in this reapect). Telephonically ambidexterous gubjecta are coded 3. No subject (fortunately) tried both to hold the telephone and write with the samo nand.

Table 18 gives a summary of the results for the XN group. Some questions (e.g., Qn. 2 on each simulation) admitted of only one response and tho totals for these equal the number of subjects in the group (20): othors admitted of multiple rogeonses, so that the totals are variable.

The mpan sesults for the "degree of difficulty" questions ( $Q$ n. 2 in each case) lie between "a bit difficult" and "quite difficult", the social gathering proving to be slightly easior than the other two.

The "resemblanca" responses ( $Q n .4$ of the first and second simulations, Qn. 6 of the third simulation) wore coasonably satisfactory, lying betwern "very closely" and "in some ways" in each case. Subjects found the reproduction of the public address announcements to be quite realistic, and were (not surprisingly) somewhat less convinced by the audiovigual scenario of sinulation 1 , although 7 out of 20 awarded even this the accolade of very close resemblance.

Table 18: Sumary of responses of YN group to Section III of the questionnaire.

| Queation | Number |  | of | $\begin{gathered} \text { occu } \\ 4 \end{gathered}$ | re | 6 | 7 |  | ded | responae |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 |  |  |  |  |  | $\times$ |  | Total | Av.* |
| Simulation 1 (social gathering) |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 4 | 3 | B | 10 | 6 |  |  | 0 | 0 | 31 |  |
| 2 | 1 | 11 | 8 | 0 |  |  |  |  | 0 | 20 | 2.35 |
| 3 | 6 | 0 | - | 1 | 6 | 1 | 1 | 0 | 0 | 23 |  |
| 4 | 7 | 10 | 3 | 0 |  |  |  | 0 | 0 | 20 | 1.80 |


Simulation 3 (telephone
listaning in noise)

* The rating scales (easy $=1 \ldots$ almost impossible $=4$, etc.) are treated metrically for thia puxpose.
** Excludes the "no response" category


### 6.2.7 Normalized indices of impairment, disability and handicap

For aubsequent comparison between the $Y N$ and the impaired groupa, the YN group reaults are re-axpressed in a normalized form, as distributions with sero mean and unit standard deviation. For example, the left ear hearing threshold level $H_{4}$ is transformed to the variable $a_{i} I_{1}=\left(R_{4} X_{1}-1,2\right) / 6,2$, the constants being those in the 4 kHz calunn of Table 5.

Table 19 lists the normalized indices. The symbol a is used for those derived from the impairment measures, $p$ for those derived from the liatening performance teats (simulations and free-field apoech audionotry), a and $n$ rempectively for those derived from the 'ditability' and 'handicap' quostions of the questionnaires, and $s$ (for 'self-absamament')

| Notmaingoid index | Ḑuant ity characterized |  | I | $y$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $a_{1}{ }^{1}$ |  | left ear | 1.05 | 6.18 | di |
| $a_{2}{ }^{2}$ | HLL， 4 KHİ | ricght ear | ． 0.10 | 5.16 | dB |
| $\Omega_{1}$ |  | LR av． | 0.18 | 5.11 | dB |
| $a_{e^{\prime}}{ }^{1 /}$ |  | left ear | －0．42 | 4.68 | dB |
| $a_{z}{ }^{R}$ | H1TH，av，1，2，3 kHz | right ear | 0.37 | 4.40 | dB |
| $a_{2}$ |  | LR av． | －0．02 | 4.09 | dB |
| $a_{3}{ }^{\text {r }}$ |  | left eat | ＇2． 32 | 5.17 | dB |
| $a_{3} R$ | Hrlta，av．3，A，E KHiL | right sar | 2.30 | 3.44 | dB |
| $a_{3}$ |  | LR av． | 2.31 | 3.88 | dB |
| $a_{4}{ }^{11}$ |  | 2nft rear | －0．708 | 0.316 | 1. |
| $a_{4}{ }^{1}$ | I＇［．L | right ear | －0．734 | 0.266 | 1 |
| $a_{1}$ |  | LR iv． | －0．721 | 0.172 | 1 |
|  |  | left bat | －10．5 | 5.05 | dB |
| $\mathrm{as}^{\mathrm{R}}$ | ＇45 2 | right ear | －9．5 | 3．11 | dB |
| $\mathrm{Cl}_{3}$ |  | LR av． | ． 10.0 | 2.83 | dB |
| ${ }^{6}$ | Comporszte tomporat roaolution jmbatrinent measure： |  | $x_{B}: \quad f a_{1}$ | ＋ $\mathrm{H}_{3} / 12.802$ |  |
| $a)^{1,}$ |  | Inct bar | 36．6 | 6.55 | UB |
| $\mathrm{a}_{7} \mathrm{R}$ | どら・1 | right ear | 34.6 | 4.00 | $a 3$ |
| a． |  | LR av． | 35.5 | 4.69 | dB |
| $120{ }_{0}^{L}$ |  | Left 1935 | －23．4 | 4.50 | d8 |
| $10_{0} \mathrm{R}$ | FSe 2 | right ear | －24．5 | $4,30$ | dis |
| $a_{0}$ |  | TR AV． | －24．0 | 3.58 | dB |
| $a_{0}$ | composita frequancy ure trectivity impait：mont measure |  | 40： 613. | $+0_{B} / 1.79 \%$ |  |
| $310^{1}$ |  | Lef．t ear | 24.0 | 4．16 | dB |
| $a_{12} 0^{12}$ | CR 1 | ribut ear | 24.9 | 3．76 | d8 |
| $\mathrm{a}_{10}$ |  | liR av． | 24.4 | 3．4t | 413 |
| $\mathrm{aL}_{1} \mathrm{~L}_{\text {L }}$ |  | Left ent | 24.9 | 3.86 | UB |
| $\mathrm{Ca}_{2} \mathrm{~L}^{\mathrm{N}}$ | CR | rught ear | 24．1 | 4.70 | 413 |
| $\mathrm{a}_{2}$ |  | LR dV． | 24.5 | 3.77 | dB |
| 62\％ | Avorabce of critical cat iods （：R lanis ©R 2（TAR RU．） |  | 24.5 | 3.18 | dB |
| $17.3{ }^{3}$ |  | Loft gar | 10.1 | 4.89 | d 3 |
| $\mathrm{a}_{2} 3^{R}$ | Or | ribilt gent | － 1.1 | 2.20 | dB |
| $\mathrm{a}_{2}$ ， |  | T，R dV． | －9．2 | ＇2．75 | dB |

（Tabla cont inures）

Table 13 (cont d )

for combined measuros of 5 and $H$ from the questionnalros. for each entry, the normalized index ior an individual 1 s ogual to $\left(A_{j}-x\right) / H$ where $A_{i}$ is the individual score in the original scale. The unit in which $x, y$ and tho origanal measure $A$ are expressed is included in the Table for referonce. Note that for the indicen $a_{1}, a_{2}$ and $a_{2}$ the Erit means ( $x$ ) are uncorrected for salibration, and correspond to the individual data in quble 5 .

The resulta for the NI group aze given in the series of Tables 20-32 in the same order and format as Tables $5-6$ and $B-18$ for the $y N$ group, An evaluation of the NI group results relative to normals is made in Clapter 6.3.7.

### 6.3.1 Pure-tone audiometyy

Table 20 gives the results of the pure-tone audiometry (cf. Table 5). Tho mean hearing threshold level of the group (last block of Table 20)

Table 20: Results of pure-tone audiometry (Group NI)

| Subj | Age/ | 8isx | En | 0. | 1 | 2 | 3 | 4 | 6 | 8 kHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 101 | 53 | M | 1. | 4 | 4 | 18 | 24 | 27 | 45 | 28 |
|  |  |  | R | 7 | 7 | 20 | 6 | 15 | 36 | 27 |
| 102 | 49 | M | L | 9 | 0 | 2 | 1.2 | 36 | 47 | 39 |
|  |  |  | 8 | 14 | 5 | 3 | 1.3 | 35 | 54 | 48 |
| 103 | 50 | M | L | 8 | 3 | 3 | 4 | 0 | 65 | 35 |
|  |  |  | R | 3 | -4 | 2 | 2 | 0 | 20 | 30 |
| 104 | 54 | M | P1 | B | 42 | 46 | 58 | 55 | 2.6 | 15 |
|  |  |  | R | 1.8 | 35 | 49 | 49 | 3B | 32 | 27 |
| 305 | 37 | M | 15 | 2 | 9 | 日 | 1.1 | 1.1 | 12 | 2.1 |
|  |  |  | R | 2 | 5 | 6 | 20 | 23 | 27 | 40 |
| 106 | 62 | M | [ | 25 | 40 | 66 | 70 | 55 | 85 | 85 |
|  |  |  | R | 12 | 15 | 43 | 44 | 40 | 62 | 70 |
| 307 | 62 | M | $L$ | 25 | 37 | 32 | 45 | 66 | 82 | 75 |
|  |  |  | $R$ | 7.3 | 20 | 25 | 55 | 52 | fl | 15 |
| 108 | 52 | M | t | 47 | 64 | 63 | 52 | 37 | 32 | 15 |
|  |  |  | R | 30 | 63 | 50 | 35 | 18 | 17 | 16 |
| 109 | 32 | F | t | 9 | 8 | 5 | 12 | 6 | 1.6 | 20 |
|  |  |  | R | 4 | 6 | 3 | 1.5 | 1.3 | 5 | 5 |
| 110 | 2.3 | M | $L$ | -2 | 0 | 10 | 4 | 3 | 23 | 7 |
|  |  |  | R | 3 | 0 | 7 | 0 | 0 | 23 | 4 |
| 111 | 2.1 | M | $\mathrm{r}_{1}$ | 5 | 8 | 6 | 6 | 2 | 12 | - 9 |
|  |  |  | R | 6 | 6 | 0 | 4 | -1 | 2.6 | 15 |
| 112 | 46 | M | If | 13 | 12 | 2.6 | 42 | 48 | 64 | 53 |
|  |  |  | R | 5 | 4 | 9 | 2.2 | 38 | 50 | 39 |
| 113 | 42 | M | T. | 1.0 | L'7 | 53 | 60 | 60 | 66 | 55 |
|  |  |  | R | 9 | 16 | 53 | 36 | 57 | 63 | 49 |
| 114 | 39 | M | $\mathrm{r}_{1}$ | 3 | 6 | 2 | 1.3 | 2.6 | 23 | 13 |
|  |  |  | R | 2 | 4 | 3 | 3 | 1.6 | 20 | 1.4 |
| 115 | 30 | M | [ | 1.2 | 5 | - 4 | 6 | 112 | 20 | -5 |
|  |  |  | R | 5 | 6 | 0 | 1.4 | 1.6 | 20 | 1.9 |


| Subject | Age/ | sex | Ear | 0.5 | 1 | 2 | 3 | 4 | 6 | 8 kHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 116 | 54 | M | L | 4 | 18 | 43 | 52 | 65 | 73 | 65 |
|  |  |  | R | 5 | 4 | 21 | 30 | 30 | 41 | 59 |
| 217 | 32 | M | L | 9 | 2 | 19 | 22 | 29 | 18 | 5 |
|  |  |  | R | 11 | 2 | 6 | 5 | 10 | 16 | 7 |
| 118 | 30 | M | L | 3 | -2 | 5 | 3 | 4 | 17 | 6 |
|  |  |  | R | 10 | 5 | 2 | 9 | 10 | 13 | 18 |
| 119 | 44 | M | L | 5 | 7 | 20 | 10 | 24 | 21 | 33 |
|  |  |  | R | 12 | 16 | 3 | 21 | 17 | 32 | 41 |
| 120 | 49 | M | L | 0 | 2 | -8 | 10 | 17 | 40 | 62 |
|  |  |  | R | 0 | 5 | 15 | 12 | 34 | 40 | 48 |
| 121 | 57 | M | L | 15 | 28 | 12 | 32 | 48 | 63 | 57 |
|  |  |  | $R$ | 14 | 18 | 16 | 40 | 52 | 71 | 68 |
| 122 | 63 | M | $L$ | 15 | 11 | 23 | 33 | 53 | 47 | 77 |
|  |  |  | R | 13 | 5 | 13 | 31 | 23 | 33 | 63 |
| 123 | 45 | M | L | 20 | 23 | 12 | 20 | 13 | 17 | 10 |
|  |  |  | R | 17 | 25 | 23 | 25 | 22 | 32 | 34 |
| 124 | 39 | M | L | 0 | -1 | -6 | 6 | 35 | 62 | 45 |
|  |  |  | $R$ | 0 | 6 | 2 | 2 | 42 | 48 | 51 |
| Mean | 45 |  | L | 10.4 | 14.3 | 19.0 | 25.3 | 30.5 | 40.7 | 33.6 |
|  |  |  | R | 9.4 | 11.4 | 15.6 | 21,3 | 25.1 | 35.1 | 36.1 |
| 30 |  |  | t | 10.7 | 16.8 | 21.3 | 21.1 | 21.7 | 23.9 | 27.4 |
|  |  |  | R | 7.4 | 14.0 | 17.0 | 17.5 | 16.7 | 17.9 | 21.5 |
| True HIT |  |  | L | 9.9 | 14.8 | 20.0 | 25.3 | 30.5 | 37.0 | 35.2 |
| (dB re Iso | 389 |  | R | 8.7 | 11.1 | 16.4 | 20.3 | 23.9 | 29.3 | 38.8 |
| AD1) |  |  |  |  |  |  |  |  |  |  |

increases towards the high frequencjes as would be expected for this older noise-exposed group. The dispersion, however, is large due to the wide age range and varying noise exposure histories, There is a marked, and unexplained, tendency (not statistically significant) towards greater hearing loss in the left ears, not geen in the results of the yn group.
of the 24 subjects in the NI group, five exceeded the audiometric level deemed to represent a hearing handicap according to Eritish standard 5330 $\left(H_{323}, 30 \mathrm{~dB}\right)$; these are numbers j04, 105, 107, 108 and 113. Ten subjects fell into the category identified by SUTER (1978) as departing from normal on the basis of speech intelligibility ( $\left.H_{123}>17 \mathrm{~dB}\right)$, these were the 5 already mentioned plus numbers 112, 116, 121, 122 and 123. The remaining 14 subjects all had hearing threshold levels greater than the average normal but below suter's 'low fence': the normalized audiometric indices ( Table 19 ) for thege 14 subjects lay in the following ranges:

$$
0.0<a_{1}<7.5, \quad 0.3<a_{2} \leqslant 3.210 .5<a_{3}<7.9 .
$$

### 6.3.2 Temporal resolution and oritical ratio for an octave band masker.

Table 21 gives the results of these tests for the NI group (cf. Table 6). The mean values on both of the temporal impaiment measures $T I-1$ and TI-2, and on the critical ratio CR-1, are all raised relative to the XN group, and the dispersions are larger in each case. The elevation is statistically significant in the case of $C R-1$ (left ears, $t=3.36$, $p<0.01$; right ears, $t=3.52, p<0.01$ ), but not so for the measure $T I-1$ (left ears, $t=1.83, N . S .1$ right ears, $t=1.80, N . S$. ) nor TI-2 (left ears, $t=1.97, N . S .1$ right ears, $t=0.97, N . S$.

Table 21: Results of temporal resolution and octave-band critical ratio teats (Group NI)

| Subject | TI-1 |  | TI-2 ( AB ) |  | CR-1 (dB) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L | $R$ | 乙 | $R$ | L | R |
| 101 | -0.44 | -0.64 | -7 | -9 | 23 | 23 |
| 102 | -0.72 | -0.42 | -13 | -5 | 26 | 26 |
| 103 | -0.55 | $-1.75$ | -6 | -14 | 20 | 22 |
| 104 | -0.20 | -0.27 | -4 | -7 | 35 | 33 |
| 105 | -0.37 | -1.00 | -7 | $-1.3$ | 26 | 29 |
| 206 | $-3.67$ | +0.43 | -3 | +3 | 28 | 25 |
| 107 | 0 | -0.08 | 0 | -1 | 26 | 34 |
| 108 | -0.46 | -0,80 | -12 | -12 | 33 | 24 |
| 109 | -0.65 | -0.24 | -11 | -5 | 30 | 32 |
| 110 | -0.35 | -0.73 | -6 | $-11$ | 25 | 27 |
| 111 | $\rightarrow 1.07$ | -0.86 | -16 | $-12$ | 26 | 29 |
| 112 | -0.27 | -0.26 | $-2$ | -5 | 24 | 22 |
| 11.3 | -0.19 | -0.20 | -5 | -4 | 34 | 32 |
| 114 | -0.61 | -0.71 | -11 | -15 | 19 | 44 |
| 115 | $-0.21$ | -0.60 | -3 | -12. | 26 | 28 |
| 216 | -0.0.15 | -0.37 | -2. | -6 | 39 | 28 |
| 117 | -0.24 | -0.61 | -6 | -11 | 28 | 30 |
| 118 | -0.65 | -0.75 | -11 | $-12$ | 27 | 28 |
| 119 | -0.80 | -0.5\% | $-16$ | -- 2 | 30 | 35 |
| 120 | $-0.24$ | -0.79 | $-4$ | $-15$ | 2.7 | 33 |
| 121 | -0.11 | -0.21 | -3 | -4 | 30 | 39 |
| 122 | -0.14 | -0.14 | -2. | -3 | 35 | 46 |
| 123 | $-1.50$ | -0.65 | -18 | -1.3 | 37 | 33 |
| 124 | -0.58 | +0.03 | $-14$ | $+1$ | 32. | 30 |
| Mean | -0.50 | -0.51 | -7.8 | -8.2 | 28. 7 | 30.5 |
| SD | 0.42 | 0.43 | 5.1 | 5.2 | 5.0 | 6.2 |

### 6.3.3 Freguency selectivity off-frequency listening and oritical ratio for a broadband masker

The results of these tests for the NI group are given in Table 22 (cf. Table 8). The mean values and diapersions axe all raised relative to the YN group and in the case of the measures FS-1, FS-2 and CR-2 the elevation is much more marked than in the case of the temporal impairment and octave-band critical ratio measures (Chapter 6.3.2). Statigtical tests

Table 22: Reeults of Exequency selectivity and off-exequency listening tests, and broadband critical ratio, in decibels (Group Nr)

| Subject | FS-1 |  | FS-2 |  | OF-L |  | $\mathrm{OF}-\mathrm{H}$ |  | CR-2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\pm$ | R | L | R | L | R | L | R | L | 8 |
| 101 | 44 | 38 | -31 | -21 | -2 | -3 | -4 | -4 | 20 | 24 |
| 102 | 52 | 52 | -9 | -12 | -2 | -2 | -7 | -7 | 26 | 29 |
| 103 | 33 | 27 | -24 | -25 | -2 | -7 | -11 | -4 | 22 | 17 |
| 104 | 75 | 62 | -4 | -7 | -2 | -7 | -2. | -7 | 44 | 34 |
| 105 | 34 | 42 | -28 | -21 | -4 | -4 | -4 | +1 | 27 | 28 |
| 106 | 74 | 71 | -6 | -11 | -1 | +7 | -9 | $+13$ | 45 | 47 |
| 107 | 88 | 90 | -11 | -2 | $+1$ | -6 | -3 | -7 | 64 | 57 |
| 100 | 54 | 37 | $-12$ | -23 | -4 | -6 | -2 | -5 | 32 | 25 |
| 109 | 39 | 48 | -28 | $-17$ | -3 | -13 | $+1$ | -30 | 32 | 30 |
| 110 | 39 | 34 | -21 | -2.5 | $-8$ | -8 | -9 | -9 | 25 | 24 |
| 111 | 33 | 43 | -2.9 | -23 | -5 | -5 | -6 | -1 | 27 | 31 |
| 112 | 57 | 52 | -5 | -12 | -4 | -4 | -7 | $-6$ | 27 | 29 |
| 113 | 84 | 03 | -6 | $-7$ | -J | -1 | -12 | -21 | 55 | 55 |
| 114 | 49 | 52 | -15 | -17 | -5 | -2 | -34 | -10 | 29 | 33 |
| 115 | 57 | 42 | -J0 | -21 | -6 | -2 | -20 | -9 | 32 | 28 |
| 116 | 86 | 83 | -6 | $-1$ | +2 | -1 | -9 | -6 | 57 | 49 |
| 117 | 51 | 51 | -13 | -37 | -5 | -10 | -10 | $-17$ | 29 | 33 |
| 118 | 41 | 38 | -22 | -24 | -9 | -8 | -30 | -8 | 28 | 27 |
| 119 | 53 | 43 | -21 | -25 | -31 | -4 | $-12$ | -8 | 39 | 33 |
| 120 | 42 | 54 | -35 | $-22$ | -4 | 0 | -8 | -9 | 22 | 31 |
| 121 | 64 | 81 | -5 | -7 | -2 | 0 | -4 | -11 | 34 | 53 |
| 122 | 90 | 64 | -1 | $-4$ | 0 | +1 | -4 | $+1$ | 56 | 33 |
| 123 | 50 | 47 | -20 | -2.1 | -2. | -5 | $-32$ | -3 | 35 | 33 |
| 124 | 62 | 62 | -9 | -11 | $+1$ | 0 | -7 | $-6$ | 36 | 38 |
| Mean | 56.3 | 54.0 | . 13.18 | -15.2 | -3.3 | $-3.7$ | -8.1 | $-6.0$ | 35.1 | 34.2 |
| SD | 18.0 | 17.2 | B. 4 | 7.8 | 3.1 | 4.2 | 5.0 | 5.5 | 12.3 | 10.5 |

gave the following regults:

| $\text { FS }-1$ | left ears, right ears | $\begin{aligned} & t= 4.64, \\ & 4.93 \end{aligned}$ | $p<0.001$ |
| :---: | :---: | :---: | :---: |
| FS-2 | left ears, right ears | $\begin{array}{r} t=4.59 \\ 4.76 \end{array}$ | P |
| CR-2 | left oara, right ears | $\begin{array}{r} t=3.56 \\ 3.94 \end{array}$ | $p<0.001$ |
| OR-L | left ears, right ears | $\begin{array}{r} t=\begin{array}{l} 3.27 \\ 1.94 \end{array} ~ \end{array}$ | $\begin{gathered} p<0.01 \\ \text { N.s. } \end{gathered}$ |
| OF-H | left ears, right ears | $\begin{aligned} & t= 1.33 \\ & 1.60 \end{aligned}$ | $\begin{aligned} & \text { N.s. } \\ & \text { N,S. } \end{aligned}$ |

For the NI group there was a considerable difference between the mean values of $C R-1$ (octave band) and $C R-2$ (broadband), whereas the values were almost identical for the $Y N$ group. 'This difference might be explained on the basis of critical band widening on the part of the NI subjects and the FS tests certainly indicate such a broadening, However, this explanation is posabbly spurious. As indicated by the yN group resulta (Chapter 6.2 .3 ) the average critical band was of the order 300 Hz wide and this is some 9 times smaller than that of the octave-band masker. Unless the critical band is upwards of 10 times wider in the $N$ g group than in the YN group one would therefore expect no difference between $C R-1$ and $C R-2$, This seams very unlikely to be the case for the average of the NI group, containing as it doss a large proportion of only mildly impaired perans, it could, however, be the case for a few of the more impaired individuals. Examination of the data shows that the subjects mainly responsible for the mean difference between $C R-1$ and $C R-2$ are those already identified as sxceeding the 'low fence' of BS 5330, and they have sloping audiograms. An alternative explanation of high CR-2 values is that the lower part of the broadband noise masker gpectrum is heard much louder than that part local to the probe tone, and thus exerting a remote-masking effect exceeding the local manking, Unfortunately time limitations imposed by the experimental protocol precluded testing the frequency selectivity in more exacting detail, and the significance of raised critical ratios for the broadband masker remains indeterminate, The better basis of comparison between Nr and YN subjects appears to be CR-1, and the alternative measure CR-2 has been discarded in the further consideration of the present results,

### 6.3.4 simulated listoning situations

The method of scoring the results of these tests was the same as that described in Chapter 6.2.4.

### 6.3.4.1 Soctal gathortng

The regults of this gimulation for the NI group are given in Table 23 (cf. Table 9), The pattern of errors in this name-and-addxess task is similar to that for the $Y N$ group, the greategt difficulty again being experienced with the surnames and the street and town names, whilst comparatively few errors were made on the initials, street classifiers and numeral groupe, The grand average error score for the NI group was 26.2\%, twice as many as for the YN group, and the dispersion was also nearly twice an large (1.1.08 compared to 6.68).

| Subject | Errors per component |  |  |  |  |  |  |  | motal errars (b) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 |  |
| 101 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 3 | 3.8 |
| 102 | 4 | 11 | 4 | 12 | 6 | 12 | 0 | 3 | 32.5 |
| 103 | 1 | 7 | 0 | 6 | 3 | 2 | 0 | 2 | 13.1 |
| 104 | 1 | 12 | 1 | 12 | 5 | 12 | 3 | 16 | 38.7 |
| 105 | 1 | 6 | 0 | 12 | 1 | 7 | 0 | 0 | 16.9 |
| 106 | 2 | 12 | 0 | 13 | 2 | 7 | 3 | 5 | 27.5 |
| 107 | 3 | 12 | 3 | 13 | 8 | 8 | 1 | 12 | 37.5 |
| 100 | 3 | B | 1 | 13 | 3 | 12 | 5 | 7 | 32.5 |
| 109 | 0 | 6 | 0 | 6 | 0 | 3 | 1 | 2 | 11.3 |
| 110 | 3 | 10 | 0 | 7 | 0 | 4 | 2 | 5 | 19.4 |
| 121 | 3 | 12 | 1 | 16 | 4 | 10 | 2 | 10 | 36.3 |
| 112 | 3 | 14 | 0 | 1.1 | 3 | 9 | 3 | 6 | 30.6 |
| 113 | 4 | 13 | 2 | 1.2 | 2 | 9 | 7 | 9 | 36.3 |
| 114 | 4 | 20 | 4 | 12 | 6 | 7 | 3 | 18 | 40.0 |
| 115 | 0 | 7 | 1 | 5 | 1 | 4 | 1 | 2 | 13.1 |
| 116 | 3 | 10 | 2 | 5 | 2 | 4 | 1 | 7 | 21.2 |
| 117 | 0 | 4 | 0 | 7 | 3 | 6 | 2 | 4 | 16.3 |
| 118 | 2 | 9 | 0 | 9 | 4 | 8 | 1 | 1 | 21. 2 |
| 119 | 1 | 9 | 0 | 13 | 3 | $B$ | 3 | 12 | 35.6 |
| 120 | 1 | 6 | 2 | 8 | 1 | 3 | 2 | 1 | 15.0 |
| 121 | 0 | 8 | 7 | 15 | 6 | 11 | 6 | 12 | 45.6 |
| 122 | 2 | 12 | 1 | 10 | 4 | 8 | 1 | 6 | 27.5 |
| 123 | 4 | 9 | 1 | 9 | 0 | 4 | 4 | 6 | 23.2 |
| 124 | 1 | 14 | 0 | 1.1 | 7 | 10 | 3 | 9 | 34.4 |
| Mean | 2.25 | 9.25 | 1.58 | 9.88 | 3.08 | 7.00 | 2.25 | 6.58 | 26.2 |
| SD | 1.85 | 3.25 | 2.21 | 3.76 | 2.34 | 3, 22 | 1.87 | 4.84 | 11.0 |

### 6.3.4.2 Unexpected announcements in a public concourse

The results of this simulation for the $N I$ group are given in Table 24 (cf. Table 10). The grand average error rate was twice as high as for the YN group (52.5\% compared to 26.6\%), and the pattern is gimilar. However, whereas the YN group made no errors at all on questions 3, 8a and 20b, all questions elicited exrors in the NI group. Particularly notable is the differing performance on this and the name-and-address tasks on the part of subject 101 ,

Table 24: Results of simulation of announcements in a public concourse (Group NI)

| Subject | 1 | Errors in each queation |  |  |  |  |  |  |  |  |  |  |  |  | Total exrors (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 3 | 4 a | 4b | 5 | 6 | 7 | 8a | 8b | 98 | 9b | 10a | 10b |  |
| 101 | 1 | 0.5 | 0 | 1 | 1 | 0 | 1. | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 60.7 |
| 102 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0.5 | 0 | 1 | 67.9 |
| 103 | 2 | 0 | 0 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0.5 | 42.9 |
| 104 | 1 | 0 | 1 | 1 | 1 | 1 | 1. | 1 | 0 | 1 | 1. | 0.5 | 0.5 | 1 | 78.6 |
| 105 | 1 | 0 | 0 | 0.5 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 46.4 |
| 106 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0.5 | 0 | 46.4 |
| 107 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 78.6 |
| 108 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 50.0 |
| 109 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 42.9 |
| 110 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 42.9 |
| 112 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 57.1 |
| 112 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 20.6 |
| 113 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 57.1 |
| 114 | 0 | 1 | 0 | 1 | 1 | 0 | 1. | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 64.3 |
| 115 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0.5 | 1 | 0 | 0 | 39.3 |
| 116 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 50.0 |
| 117 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 28.6 |
| 118 | 0 | 0 | 0 | 0 | 1 | 0 | 1. | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 28.6 |
| 119 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 71.4 |
| 120 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 17.9 |
| 121 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0.5 | 1 | 53.6 |
| 122 | 0 | 1 | 0 | 1. | 1 | 0 | 1 | 0.5 | 0.5 | 1 | 1 | 1 | 1 | 1 | 71.4 |
| 123 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 64.3 |
| 124 | 1. | 1 | 0 | 2 | 1 | 1 | 1 | 1 | l | 1 | 0 | 1 | 0 | 0 | 71.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | Mean | 52.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | SD | 16.8 |

### 6.3.4.3 Listening on the telephone in a noisy place

The results of this simulation for the NI group are given in Table 25 (cf. Table 11). As with the YN group, the mean error rate was slightly higher on this monaural task than in the simulated social gathering (29.0\% compared with $26.2 \%$ ) but the pattern of the errors across items was similar, As with the YN group, there was a markedly greater error rate on initials compared with the social gathering, and a markediy lower error rate on telephone numbers.

The overall error rate (29.0\%) compares with $16.9 \%$ for the YN group, a lesser difference than in the case of the preceding simulation.

Table 25: Results of simulation of listening on the telephone (Group NI)

| Subject | Errors per component |  |  |  |  |  |  |  | rotal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | errors (\%) |
| 101 | 2 | 9 | 0 | 10 | 0 | 6 | 0 | 2 | 18.1 |
| 202 | 9 | 13 | 2 | 15 | 2 | 12 | 3 | 3 | 36.9 |
| 103 | 5 | 9 | 0 | 6 | 0 | 4 | 1 | 2 | 16.9 |
| 104 | 1.3 | 17 | 4 | 17 | 5 | 13 | 7 | 9 | 53.1 |
| 105 | 3 | 5 | 2 | 10 | 0 | 6 | 0 | 0 | 16.2 |
| 106 | 9 | 11 | 2 | 13 | 3 | 11 | 2 | 6 | 35.6 |
| 107 | 9 | 13 | 1 | 13 | 4 | 7 | 2 | 1 | 31.3 |
| 108 | 6 | 10 | 0 | 12 | 1 | 10 | 2 | 1 | 26.2 |
| 109 | 0 | 7 | 0 | 7 | 1 | 7 | 2 | 1 | 15.6 |
| 110 | 4 | 11 | 0 | 12 | 1 | 12 | 4 | 2 | 28.0 |
| 111 | 1 | 10 | 2 | 11 | 0 | 22 | 2 | 9 | 29.4 |
| 112 | 7 | 11 | 3 | 14 | 1 | 10 | 1 | 4 | 31.9 |
| 113 | 12 | 26 | 4 | 17 | 5 | 1.3 | 5 | - | 50.0 |
| 114 | 6 | 12 | 3 | 17 | 5 | 14 | 3 | 10 | 43.7 |
| 315 | 5 | 10 | 2 | 10 | 1 | 7 | 0 | 3 | 23.8 |
| 116 | 8 | 10 | 4 | 12 | 1 | 10 | 3 | 4 | 32.5 |
| 117 | 7 | 1.3 | 0 | 13 | 0 | 9 | 0 | 0 | 26.2 |
| 118 | 4 | 5 | 0 | 8 | 0 | 3 | 0 | 0 | 12.5 |
| 119 | 2 | 8 | 0 | 9 | 0 | 9 | 1 | 10 | 24.4 |
| 120 | 5 | 7 | 0 | 8 | 0 | 5 | 0 | 0 | 15.6 |
| 122 | 6 | 10 | 0 | 6 | 1 | 9 | 0 | 1 | 20.6 |
| 122 | 13 | 11 | 3 | 12 | 0 | 9 | 7 | 5 | 36.2 |
| 123 | 4 | 7 | 1 | B | 0 | 0 | 2 | 5 | 21. 9 |
| 124 | 13 | 15 | 5 | 16 | 10 | 12 | 4 | 4 | 45.4 |
| Mean | 6.38 | 10.42. | 2.50 | 11.50 | 1.71 | 9.08 | 2.33 | 3.75 | 29.0 |
| SD | 3.79 | 3.32 | 1.62 | 3.41 | 2.48 | 3.0] | 2.09 | 3.34 | 11.6 |

### 6.3.5 Free-field speech audiometry

The reaults of these tests for the $N I$ group are given in I'able 26 (cf. I'able 12). Relative to the YN group, the error rate was dramatically greater in the quiet conditions (mean over three levela $20.0 \%$ compared to 7.7\%) in the background noige condition the difference was less marked (30.38 against 20.88) but the dispersion was much greater. The intelligibility at $70 \mathrm{~dB}(\mathrm{~A})$ in noise was comparable with that at $30 \mathrm{~dB}(\mathrm{~A})$ in quiet, the same result as with the $Y N$ group.

Table 26: Results of free-field speech audiometry (Group NI)

| Subject | Number of errors per list |  |  |  |  |  |  |  | Av. S errora in |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $d B(A)$ |  | $\mathrm{dB}(\mathrm{A})$ |  | $d B(A)$ |  | dB(A) <br> oise | quiet | noise |
|  | 3 | 7 | 1 | 5 | 2 | 5 | 4 | 8 | $\begin{aligned} & 1-2-3- \\ & 5-6-7 \end{aligned}$ | 4-8 |
| 101 | 0 | 1 | 2 | 3 | 26 | 16 | 5 | 7 | 26.7 | 20.0 |
| 102 | 0 | 2 | 7 | 1 | 7 | 10 | 12 | 6 | 14.4 | 30,0 |
| 103 | 1 | 2 | 2 | 1 | 6 | 3 | 12 | 5 | B. 3 | 28.3 |
| 104 | 7 | 3 | 13 | 21 | 20 | 20 | 16 | 13 | 46.7 | 48.3 |
| 105 | 0 | 1 | 2 | 1 | 21. | 11 | 12 | 6 | 20.0 | 30.0 |
| 106 | 14 | 6 | 23 | 28 | 30 | 30 | 29 | 28 | 72.8 | 95.0 |
| 107 | 11 | 7 | 12 | 10 | 17 | 18 | 12 | 15 | 41.1 | 45.0 |
| 108 | 5 | 6 | 23 | 20 | 27 | 30 | 21 | 20 | 61.7 | 68.3 |
| 109 | 0 | 1 | 0 | 1 | 6 | 4 | 7 | 2 | 6.7 | 15.0 |
| 110 | 6 | 1 | 0 | 1 | 4 | 4 | 7 | 7 | 8.9 | 23.3 |
| 111 | 0 | 2 | 4 | 0 | 12 | 5 | B | 15 | 12.8 | 38.3 |
| 112 | 2 | 2 | 5 | 3 | 3 | 4 | 9 | 9 | 10.6 | 30.0 |
| 113 | 7 | 5 | 1.1 | 1.1 | 16 | 13 | 11 | 10 | 35.0 | 35.0 |
| 114 | 8 | 1 | 5 | 4 | 7 | 12 | $\square$ | 2 | 20.6 | 16.7 |
| 115 | 0 | 1 | 0 | 2 | 2 | 3 | 1 | 1 | 4.4 | 3.3 |
| 116 | 2 | 3 | 2 | 1 | 8 | 4 | 7 | 7 | 11.1 | 23.3 |
| 117 | 2 | 1 | 2 | 2 | 8 | 8 | 5 | 5 | 12.8 | 16.7 |
| 118 | 2 | 2 | 0 | 0 | 0 | 0 | 4 | 1 | 2.2 | 8. 3 |
| 119 | 2 | 1 | 1 | 6 | 3 | 10 | 13 | 16 | 12.8 | 48.3 |
| 120 | 0 | 1 | 4 | 3 | 0 | 1 | $B$ | 6 | 5.0 | 23.3 |
| 121 | 0 | 4 | 6 | 2 | 5 | 9 | 10 | 8 | 14.4 | 30.0 |
| 122 | 4 | 2 | 0 | 0 | 5 | 2 | 3 | 5 | 7.2 | 13.3 |
| 123 | 3 | 1 | 1. | 2 | 1 | 5 | 9 | 5 | 7.2 | 23.3 |
| 124 | 1 | 4 | 5 | 3 | 6 | 12 | 5 | 4 | 17.2 | 15.0 |
| Av. errors (8) | 10.7 | 8.2 | 17.9 | 17.5 | 33.3 | 32.5 | 32.5 | 28.2 | 20.0 | 30.3 |
| SD |  |  |  |  |  |  |  |  | 18.5 | 20.0 |

### 6.3.6 flandicap and disability questionnaires

The method of scoring the questaonaire results 18 described 1 n chapter 6.2.6.
6.3.6.1 Section $I$ - Hearing in general

The results of this questionnaire for the NI group are given in Tables $2 \%$ (cf. Table 23 ) and 28 (cf. Table 14) for the questions clasaified as relevant to $D$ and $H$ respectively.

Table 27: Questionnaire Section It Group NI individual scores on disability questions


Table 28: questionnaire Section I: Group NI individual scoreb on handicap questions


Reforring first to Tables 27 and 23 , tho comparison of the $N I$ and $Y N$ groups shows a vory large increase in solf-rated disability (39. $1 \%$ compared to 14.38 ) and a proportionate increase in the dispergion. The contrast is apparent on each of the 7 questions. Even larger differences are revealed in reapect of the solf rated handicap questions (Tables 28 and 14) with the excoption of $q$ n 11 ("In conversation with other people that you don't hear very well, do you abk them to repeat what they said?"). The score on this question was already rather high (A1\%) for the YN group and it would appear that this question is not very sensitive for comparing the impaired and non-impaired, overall, the NI group scored four timos higher than the YN group ( 31.58 against $7.9 \%$ ) on these $A$ questions.

### 6.3.6.2 Section $!$ ( Hearing in particular situations

Tho results of section if of tho questionnaire for the NI group are given in Tables 29 (cf. Table 15) and 30 (of. Table 16) for the quostions classified as relevant to $D$ and $H$ respectively.

Referring to rables 29 and 15 , the responses of the NI group are seen to be systematically greater than those of the YN group, other than on Qn. 1 of each aituation (the 'familiarity' questions) where the scores are very

Table
29: Questionnaire section II: Group NI individual scores on disability questions


[^1](Table continuos)
similar (average weighting $w$ over the nine situations 2.26 and 2.22 respectively, on the scale running from 0 to 3 ). However, some questions elicited a large difference between groups (e.g., gns. A3 and F3) whereas others proved rather insensitive (e.g., C2 and J4). overall, the weighted scores averaged 31.38 for the NI group againat 19.98 for the YN group.

Table 29 (cont'd)


In contrast, the responses to the $H$ questions generally failed to distinguish clearly between the impoired and non-impaired. comparing Tables 30 and 16 , it will be seen that there was no difference in the group mean score on Qns. A4 and B4, and very little oh Qn. FAl the greatest distinction occurzed on $Q n s$. DA and $J 5 / J 6$. The overall weighted scores were $28.2 \%$ for the YN group, increasing to $34.8 \%$ for the NI group.

Table 30: questionnaire Section II: Group NI individual scores on
handicap questions


For completeness, the results for situation $B$ and for situations $B-C-G$ are extracted and presented in rable 31. Comparison with Table 17 ghows that the $A$ questions in these situations failed to distinguish between the NI and YN groupe whereas an appreciable geparation was made by the $D$ questions (e.g., $37.0 \%$ compared to $26.5 \%$ for situation B).

Table 31: Questionnaire Section II: Group NI results for situation $B$ and situations B-C-G combined, for disability and handicap questions

Subject Percentage score (weighted)
Situation B
Situations B, C, G
D H
D $\quad$ H

| 101 | 19 | 7 | 18 | 16 |
| :---: | :---: | :---: | :---: | :---: |
| 102 | 19 | 22 | 22 | 21 |
| 103 | 29 | 33 | 26 | 38 |
| 104 | 31 | 37 | 38 | 27 |
| 105 | 39 | 44 | 31 | 34 |
| 206 | 28 | 37 | 45 | 40 |
| 107 | 46 | 44 | 49 | 46 |
| 108 | 71 | 22 | 51 | 27 |
| 109 | 39 | 22 | 36 | 27 |
| 210 | 28 | 15 | 29 | 26 |
| 111 | 19 | 22 | 22 | 37 |
| 112 | 58 | 44 | 39 | 30 |
| 11.3 | 87 | 56 | 57 | 46 |
| 114 | 39 | 44 | 39 | 3\% |
| 115 | 19 | 30 | 18 | 30 |
| 116 | 71 | 56 | 43 | 40 |
| 117 | 29 | 44 | 28 | 33 |
| 2.28 | 19 | 15 | 18 | 29 |
| 119 | 39 | 22 | 34 | 23 |
| 120 | 19 | 30 | 22 | 33 |
| 121 | 19 | 52 | 36 | 32 |
| 122 | 39 | 22 | 23 | 23 |
| 123 | 71 | 78 | 45 | 47 |
| 1.24 | 29 | 44 | 29 | 35 |
| Mean (\%) | 37.0 | 35.2 | 32.4 | 32.2 |
| SD | 20.2 | 16.3 | 21.7 | 8.1 |

### 6.3.6.3 Section III - Reaction to simulated situations

Results for the NI group on this part of the questionnaire are summarized in Table 32 (cf. Table 18 ). The degree of difficulty reported by this group was predictably greater on each simulation than that reported by the YN group, but the difference is not as marked as might have been expected (compare Qns, 2 of each simulation).

Both groups found the verisimilitude of the second simulation (public address) better than that of the first (social gathering), with telephone listening intermediate.

Table 32: Sumnary of responses of NI group to Section III of the Questionnaire


[^2]
### 6.3.7 Comparigon of results of YN and NI groupg

Using the notation of Table 19 , the individual reaults of each member of the NI group on a selection of the $a, p, d, h$ and $s$ indices are given in Table 33.

Table 33: Hearing of NI group relative to normal group YN
Value of normalized index (Bee key below)

| Subject | $a_{2}$ | $a_{3}$ | $a_{4}$ | $a_{10}$ | $a_{7}$ | $a_{14}$ | $P_{10}$ | $\boldsymbol{P}_{17}$ | $p_{1} A$ | $p_{20}$ | $p_{21}$ | $\theta_{24}$ | 827 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 109** | 13 | 7 |  |  |  |  | 2 |  |  | 14 | 6 | 3 |  |
| 106** | 11 | 14 |  |  | 7 |  |  |  |  | 17 | 9 | 9 |  |
| 104** | 11 | 10 | 2 | 2 | 7 |  | 3 | 4 | 3 | 10 | 3 | 4 |  |
| 113** | 10 | 14 | 3 |  | 10 | 2 | 3 | 2 | 3 | 7 |  | 10 | 7 |
| 107** | 0 | 14 | 3 |  | 11 |  | 3 | 4 |  | 9 | 3 | 6 | 3 |
| 116* | 6 | 11 | 2 | 2 | 10 | 3 |  |  |  |  |  | 8 | 2 |
| 121* | 5 | 12 | 3 | 2 | 7 | 2 | 4 |  |  |  |  |  |  |
| 123* | 5 | 4 |  | 3 | 2 |  |  | 3 |  |  |  | 7 | 4 |
| 122* | 4 | 8 | 3 | 4 | 8 | 3 |  | 3 |  |  |  |  |  |
| 112* | 4 | 10 | 2 |  | 4 |  | 2 |  |  |  |  | 4 |  |
| 101 | 3 | 5 |  |  |  |  |  | 2 |  | 5 |  |  |  |
| 1.19 | 3 | 4 |  |  | 2 |  | 3 | 3 |  |  | 3 | 3 |  |
| 1.24 |  | 7 | 2 |  | 5 | 3 | 3 | 3 | 3 | 2 |  |  |  |
| 102 |  | 7 |  |  | 3 |  | 2 | 3 |  |  |  |  |  |
| 120 |  | 5 |  |  | 2 |  |  |  |  |  |  | 2 |  |
| 105 |  | 3 |  |  |  |  |  |  |  | 3 |  | 8 |  |
| 114 |  | 3 |  |  | 3 |  | 4. | 3 | 2 | 3 |  | 8 | 3 |
| 117 |  | 3 |  |  | 3 |  |  |  |  |  |  |  |  |
| 103 |  | 3 |  |  |  |  |  |  |  |  |  |  |  |
| 1.15 |  | 3 |  |  | 2 |  |  |  |  |  |  | 2 |  |
| 109 |  |  |  |  |  |  |  |  |  |  |  | 3 |  |
| 110 |  |  |  |  |  |  |  |  |  |  |  | 4 |  |
| 111 |  |  |  |  |  |  | 3 | 2 |  |  |  | 3 |  |
| 118 |  |  |  |  |  |  |  |  |  |  |  | 4 |  |

*Subject exceads the 'low fence' of Suter ( $B_{12}^{L R}, 17 \mathrm{~dB}$ )
tgubject exceade the ' low fence' of HS 5330 ( Hen $_{12}^{L R}$, 30 dB )

Key to rable entries:

> " 0 " means an index value within normal limits $(<2.50)$
> " 2 " means an index value between 2.50 and 2.99
> " $n$ " ( $n>2$ ) means an index value between $n$ and $n+0.99$
> For meaning of index symbols, refer to Table 19 .

To facilitate the presentation of these data, any entry for which the value of the index was less than +2.5 is left blank, meaning that the datum is within the limits of the nommal group, The other entries are simplified to the leading digit. Thus "2" means the range $2.50-2.99, ~ " 3 "$ the range 3.00-3.99; "4" the range 4.00-4.99; and so on. These are the numbers of standard deviations of the nommal group $Y N$ by which the entry in question exceeds the mean value for the normal group.

It should be noted that the cut-off value of 2.5 does not completely embrace the range of the normal data. Far a Gaussian distribution it would include 99.38\% of the valueg. Among the 1100 data for group YN ( 55 indices, 20 subjecta) there were 8 exceedances of 2,50 , some 99.27\% faling below this cut-off, It seems safe to conolude, therefore, that virtually all entries that are not blank in table 33 represent highly significant or very highly significant exceedances of normal limits.

Subjects are ligted in table 33 in order of descending values of $a_{2}$ (corresponding to $H_{12}^{L R}$ ) down to the last case for which $a_{2}$ is less than 2.5 , and thereafter in deacending order of $a_{3}$ (corresponding to $H_{340} \mathrm{CR}_{\mathrm{a}}$ ).

The Table illustrates some important features of the results, the mont striking of which are as follows:

1. None of the three indices $a_{4}$ (temporal zesolution), $a_{10}$ (critical ratio) or $a_{14}$ (off-frequency listening) is very sensitive, nor does any of them taken alone appear as a good predictor of performance (disability) which is represented by the indices $p$.
2. The index $a_{7}$ (frequency selectivity) is sensitive and obviously correlated to $a_{3}$ (HILL at $3,4,6 \mathrm{kHz}$ ), however, it does not correspond wall to the performance measures.
3. The performance measures for two of the simulations ( $p_{10}$ and $p_{17}$ ) are moderately sensitive, but at a high price in experimental complexity. Surprisingly, the third simulation ( $P_{1 B}$ ) (telephone listening in noise) yielded very dittle information. Also somewhat unexpected wag the marked lack of correapondence between $\rho_{1 a}$ and $\rho_{21}$ (binaural gpeech audiometry in nojae), since the tasks were basically similar, although the telephone listening was monaural and there were more numarous distracting sounds.
4. Speech audiometry in quiet ( $p_{20}$ ) correlates to some extent with that in noise $\left(p_{21}\right)$ but there are notable exceptions, eubjecta 101, 105, 113, 114 and 124 gave normal performance in noise but not in quiet, Whereas the reverse occurred with subject 119, The largo deviations from normal on speech audiometry in quiet ( $p_{20}$ ) for the first five subjects listed no doubt reflects a simple loss of hearing sensitivity, indicated by the high values of $a_{2}$ (and perhaps $a_{3}$ ).
5. The gelf-rating measures $s_{24}$ (Questionnaire, section I) and $s_{27}$ (Quentionnaire, section $I r$ ) appear to be pooriy related to individual performance. In particular, there were some subjects ( $109,110,115,116,118,120$ ) wose self-rating of their general state of hearing was belied by porformance within normal limita on all the liatening tests, and others $(105,1.12,123$ ) who pexformed within nomal limits on four of the five listening teste. on the
other hand certain subjects considered their hearing normal (101, 102, 121, 122, 124) but did not perform accordingly. The self-assessment of difficulty in particular situations ( $s_{2}$ ) yielded a rather insensitive result, only 5 out of 24 subjects lying outside the normal limits. Moreover, it had been expected that this test would predict performance on the gimulations ( $P_{10}$, $p_{17}, p_{1 s}$ ) with some degree of fidelity, but this is not borne out by the results.

A global comparison between the $a, p$ and $s$ measures is given in Table 34. Here the actual numerical values for each subject are averaged under the three headings, and include values below the cut-off point applied to Table 33. Subjects are listed in rank order of descending average at. Interchanges of rank on the other average measures $p_{a v}$ and $s_{\text {av }}$ are clearly seen; extreme cases of rank differences of 12 or more are marked with asterisk or dagger.

The Spearman rank correlation coefficients between avs, pav and sav are as follows:

| $a_{\text {av }}$ vs p: | 0.634 | (p<0.01) |
| :--- | :--- | :--- | :--- |
| $a_{a v}$ vs s: | 0.316 | (N.S.) |
| $P_{\text {av }}$ vs s: | 0.356 | (N.S.) |

Thus there is a rather weak association between the mean self-assessment and either the performance or the mean impairment. Inspoction of rable 33 suggests that performance is possibly more closely linked to $a_{2}, a_{3}$ or $a_{7}$ than to the mean measure $a_{a v}$. The corresponding Spearman coefficienta are as follows;

| $a_{2}$ vs pav' 0.702 | $(p<0.01)$ | $\left(\mathrm{H}_{223}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $a_{3}$ vs Pav: 0.614 | $(p<0.01)$ | $\left(\mathrm{H}_{340}\right)$ |
| $a_{7}$ vs pav: 0.461 | $(p<0.05)$ | $(F S-1)$ |

From this it appears that the mean performance is more closely related to hoaring threshold level than to frequency selectivity, although there is a significant relation to the lattor. This finding ignores, for the moment, differences in the relationships to the constituent parts of the performance battery (see Chapter 6.4.4).

Table 34: Global comparisons of group NI results on impaiment, disability and handicap (self-assessment) measures

| $\begin{aligned} & \text { Sub- } \\ & \text { ject } \end{aligned}$ | Impairment (audiology) |  | Disability (performance) |  | Self-assesment |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $a_{a v}$ | Rank | Pav | Rank | sav | Rank |
| 113 | 7.3 | 1 | 3.8 | 5 | 8.9 | 1 |
| 107 | 7.1 | 2 | 4.4 | 4 | 4.6 | 7 |
| 116 | 6.4 | 3 | 1. 2 | 16* | 5.7 | 5 |
| 106 | 6.3 | 4 | 5.6 | 1 | 5.9 | 3 |
| 121 | 5.9 | 5 | 2.1 | 11 | 0.9 | 21* |
| 104 | 5.8 | 6 | 5.3 | 3 | 3.4 | 9 |
| 122 | 5.7 | 7 | 1.4 | $12^{+}$ | -1.1 | 24** |
| 108 | 4.2 | 8 | 5.4 | 2 | 3.1 | 10 |
| 112 | 3.9 | 9 | 1.3 | 35 | 3.5 | 8 |
| 124 | 3.7 | 20 | 2.5 | 8 | 2.8 | 17 |
| 102 | 2.7 | 11 | 2.3 | $9{ }^{+}$ | 0.2 | $22^{+}$ |
| 123 | 2.5 | 22 | 1.1 | $27^{+}$ | 6.1 | $2^{+}$ |
| 120 | 2.5 | 13 | -0. 2 | 22 | 1.5 | 18 |
| 101 | 2.2 | 24 | 1.4 | 13 | -0.6 | 2.3 |
| 119 | 2.0 | 15 | 2.6 | 7 | 2.7 | 11 |
| 114 | 2.0 | 16 | 2.6 | 6 | 5.8 | 4* |
| 117 | 1.9 | 17 | 0.5 | 20 | 2.0 | 26 |
| 115 | 1.8 | 18 | -0.3 | 23 | 2.4 | 19 |
| 105 | 1.5 | 19 | 1.3 | 24 | 4.8 | 6* |
| 109 | 1.4 | 20 | 0.0 | 21 | 2.3 | 12 |
| 111 | 0.5 | 21 | 2.2 | 10 | 2.0 | 1.5 |
| 120 | 0.5 | 22 | 0.8 | 10 | 2.2 | 1.3 |
| 118 | 0.3 | 2.3 | -0.4 | 24 | 2.1 | 14 |
| 103 | 0.0 | 24 | 0.5 | 19 | 1.0 | 20 |

Notel the lowar the rank number the more the impairment, etc.
*Difference of rank relative to $a_{a v}$ rank $\geqslant 12$
FDifference of ranks on pav and sav differ by 12 or more

### 6.4 Corrolations between the moasurements

Product-moment correlations between all the variables in Table 19 were calculated, both for the combined group NI $+Y N(n=44)$ and for the NI group alone ( $n=24$ ). In the case of the audiological impaimment measures (the monaural tests) the calculations were carried out both on the basis of individual ears (2n) and left-right average values.

The resulting matrices are dissected and presented in the following sub-chapters. Inferences drawn at successive stages enable the number of variables to be reduced, by elimination of the less aignificant ones.

The plan of this chapter is as follows:

1. Corxelations of monaural measures between left and right ear
2. Correlations between different audiological impairment measures (a)
3. Correlations between the audiological impairment measures (a) and those of performance ( $p$ ) and self-assessment ( $s$ )
4. Correzations between the measures of performance at the five tasks (three simulations, speech audiometry in quiet and nodise)
5. Corralations between the sections of the questionnaire ( $d, n, s$ ) and botween these and the task performance measures ( $p$ )
6. Multiple correlations relating performance to audiological impairmont, and performance to self-assessment
6.4.1 Correlations within each audiological impairment measure

Correlation coefficients between the left and right ear values for YN + NI and NI group alone are given in Table 35 . In this and subsequent Tablen, repetition of the decimal marker is avoided by giving the valuen of 100 r to the nemrest integer.

Correlations for the hearing threshold levels and for frequency selectivity are all highly aignificant, as are those for CR-2, but none of those for the TI and OF measures attain significance.

Apparent want of correlation can obviousiy reflect an actual absence of association, but it may result from an underlying association boing obscured by randon error, It is therefore worth exainining the latter Eactor. All the tests concerned involved a simple threshold tracking task and those liated from TI onwards ware done consecutively. There are grounde, therefore, for supposing that the component of random subjective uncertainty would be similar in each case. This atatement requires modifying alightly in that the effect of the uncertainty on the extracted meagure depends on how many threahold meagurements were involved in it.

Table 35: Correlation coefficients between left and right ear measures (x 100)

| Measure | Correlands |  | YN | Nr |  | ajone |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 100 r | Signif. | 100 | Signif. |
| $\mathrm{H}_{4}$ | $a_{2} \mathrm{~L} \quad \mathrm{vs}$ | $a_{1}{ }^{R}$ | $\theta 8$ | *** | 79 | *** |
| $H_{1.2} \mathbf{3}$ | $a_{z} \mathrm{~L} \quad \mathrm{Vs}$ | $a_{2}{ }^{R}$ | 93 | *** | 92 | *** |
| $R_{340}$ | $a_{3} L^{L}$ VB | $a_{3} R$ | 92 | *** | 84 | *** |
| TT-1 | $a_{4}{ }^{2}$ vs | $a_{4}{ }^{\text {R }}$ | -8 | N. S. | -13 | N.S. |
| Tr-2 | $a_{5}{ }^{\text {L }}$ ve | $a_{5}{ }^{R}$ | 20 | N, S. | 31 | N.S. |
| FS-1 | $a_{7} \mathrm{~L}$ vs | $a_{7}{ }^{R}$ | 89 | *** | 85 | *** |
| FS-2 | $a_{8}{ }^{L}$ vB | $a_{a} R$ | 76 | *** | 70 | *** |
| CR-1 | $a_{10} 0^{L} \mathrm{VB}$ | $a_{10}{ }^{R}$ | 45 | ** | 21 | N.S. |
| CR-2 | $a_{1,1}{ }^{\text {t v }}$ | $a_{11} \mathrm{R}$ | 81 | *** | 77 | *** |
| $\mathrm{OF}-\mathrm{H}$ | $a_{13}{ }^{\text {L }} \mathrm{va}$ | $a_{13}{ }^{R}$ | 16 | N,S. | 14 | N.S. |
| OF | $a_{24}{ }^{L}$ ve | $a_{14}{ }^{R}$ | 28 | N.S. | 30 | N.S. |

$$
\begin{array}{rl}
\text { N.S. } & p \\
* & p<0.05 \\
* * & p<0.05 \\
* * * & p<0.01
\end{array}
$$

Thus, it would be greater (by the order of $\sqrt{ } 2$ ) for measures derived from a difference (threshold shift) as in Tr-2, FS-2, OF-H and OF-L, and leas (by the order of $1 / \sqrt{3}$ ) for thone derived from averages ( $A_{123}, H_{34}$ ) than for those derived from a single determination ( $H_{4}, F S-1, C R-1$ and $C R-2$ ), These distinctions will slightly affect the correlation coefficients which, nowever, are susceptible to a larger effect, namely the actual range of the variablea, there being an inverse relation. To examine the correlation coefficients in the light of these factors, the relevant data are assembled in Table 36. The measuxe $T I-1$ is omitted since this is derived in a special way as a ratio involving three thresholds and its derivation is incompatible with those of the other measures, however, on general grounds the reliance on 3 values would tend to increase the random uncertainty and it ia noticeable that the correlation coefficients for $T I-1$ are amaller than (the already small) values for TI-2 (Table 35). Table 36 alao gives the mean of the signless differences between left and right measures for each ear, as well as the root-mean-square value of these differences.

Table 36: Factors relevant to the left-right ear correlations (data are for the combined group YN + NI)

| Measure | $\begin{aligned} & 100 r \\ & (n=44) \end{aligned}$ | Number of thresholds involved | Left-right difference |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Range ( AB ) | Signless mean (dB) | $\begin{gathered} \text { R.M,S. } \\ (\mathrm{dB}) \end{gathered}$ |
| $\mathrm{H}_{4}$ | 88 | 1 | 75 | 8.0 | 10.9 |
| $\mathrm{H}_{223}$ | 93 | Av, of 3 | 66 | 4.3 | 6.6 |
| $\mathrm{F}_{346}$ | 92 | Av, of 3 | 79 | 6.6 | 9.0 |
| TI-2 | 20 | Diff. of 2 | 23 | 5.6 | 7.3 |
| FS-1 | 89 | 1 | 61 | 5.4 | 9.0 |
| FS-2 | 76 | Diff. of 2 | 29 | 5.1 | 6.8 |
| CR-1 | 45 | 1 | 30 | 5.6 | 8.5 |
| CR-2 | 81 | 1 | 53 | 5.7 | 7.9 |
| $\mathrm{OF}-\mathrm{H}$ | 16 | Diff. of 2 | 17 | 6.5 | 9.1 |
| OF-L | 28 | Diff, of 2 | 36 | 4.1 | 5.8 |

The Table shows that there is a broad similarity of the values in each of the last two columng. As expected, the 3 -frequency averages lead to smaller values than $H_{4}$. Unexpectedly, the values for Fs-1 are greater, not smaller, than for FS-2. Given that there is also a theoretical advantage for $\mathrm{FS}-2$ ( (ee Chapter 5.1.1.3) this meadure emerges as preferable to FS-1. The fact that the correlation coefficient for FS-1 is slightly larger is probably the simple consequence of the range of values being so much larger than in the case of FS-2 (both are highly significant, table 35),

Table 36 also illustrates that op-R is an appreciably less gymmetrical function of hearing than OF-L, leading to a smaller (and non-aignificant:) correlation coefficient. The coefficient for of-L is almo formally non-significant (at $t=0.28$ ) but approaches the level $p=0.05(x=0.30)$.

### 6.4.2 Intercorrelations between the audioloqical impairment meanures

These correlations were calculated both for individual ears ( $n=08$ ) and for mean values of left and right ears ( $n=44$ ). The latter yielded higher values in almost every case, and the few exceptions occurred when the valuee were non-gignificant in both cases. Only the mean-ear values are theretore considered.

The resulta are given in Table 37 for the combined group XN $+N I$ (upper values) and the NI group alone (lower values). A large propurtion of the conf: ficients are significant or highly significant, the critical values of 100 r bring as follows:

$$
p<0.05 \quad p<0.01 \quad p<0.001
$$

upper figurea
30
40
38
48
lower figures
52
63
It may be seen from the Table that, for the combined group, the following pattern* emerges:

Highly correlated: HFL vBTI, FS, CR \& OF-L; $H_{123}$ Vs $H_{4}$ VE $H_{34}$
TI Va HTL, FS, CR-2 \& OF-L; TI-1 Ve TI-2
FS VE HTL, TI, CR \& OF-I, FS-1 VE FS-2
CK-1 Ve HTL, FS \& OF-I; CR-1 VB CR-2
CR-2 Vg TI
OF-I, ve HTL, NI, FS E CR OF-H VE TI-2

Ieas nighly correlated: HTL va $O F-H$
TI VE OF-H (TI-1 vB OF-K, N.S.)
CR-1 vS TT-1 (CR-1 vB TS-2, N.S.) OF-H ve HTL, TI-2 (OF-H VB TIT1, N.S.)

Non-significant
or uncorrelated:

> TI-1 vs OP•H

TI-2 ve CR-1
F'S va OF-H
CR-I Va TIT-2, OF-H
CR-2 vB OF-H
OF-H Va TI-1, PS, CR; OF-H vB OF-T,

The patern is similar for the NI group alone with the gignificance levels generally woakened. Compared with the combined group, the following correlations change from signi.ficant to non-aignificant:
$\mathrm{H}_{4} \mathrm{VB} \mathrm{OF}-\mathrm{H}_{1} \quad \mathrm{H}_{123} \mathrm{VB} \mathrm{CR}-1 ; \quad \mathrm{H}_{340}$ va CR-1 \& OF-H,
TI-2 vB OPMH; CR-1 vB OP-L.
The only blocks that are wholly non-significant are op-H vs FS and CR. There is an unexpectedly low correlation between op- $H$ and $o f-t$, which rendars the concept of the combined measure $a_{1 s}$ unjustified.

CR-2 correlates more highly with all other measures than does CR-1, possibly because it je not purely a meabure of critical bandwidth, being very highly correlated with $H_{4}$ and $H_{346}$ (as discussed in chapter 6.4.1) or becauge the range of values is larger in comparison to random uncertainty than $i s$ the cage with $C R-1$ (Table 36 ).

The measure CK-1 emerges as significantly correlated ( $p<0.01$ ) with I'ti but not significantly with Tit-2. This difference seems likely to be due to the way TI-I is defined (involving as it does the 4 kHz absolute threshold which is in turn correlated with CR-I). iIT-2 is the aimple unfasking measure in decibela of interrupting the masker and ita * For ease of reference, entries are duplicated in the listing,

```
Table 37, Correlation coefficients (for left-right ear means) between
    the audiological immpaimment measures ( }\times100\mathrm{ )
    Upper figures = NI + YN group ( }n=44\mathrm{ )
    lower figures = NI group alone (n = 24)
```

Meas- Corre- $a_{2} \quad a_{1} \quad a_{3} \quad a_{4} \quad a_{5} \quad a_{0} \quad a_{7} \quad a_{8} \quad a_{0} \quad a_{10} a_{11} a_{12} \quad a_{13} \quad a_{14}$
ure land

| $H_{123}$ | $a_{2}$ | - |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $8_{4}$ | $a_{1}$ | $\begin{aligned} & 80 \\ & 69 \end{aligned}$ | - |  |  |  |  |  |  |  |  |  |  |  |  |
| $B_{346}$ | $a_{3}$ | $\begin{aligned} & 84 \\ & 75 \end{aligned}$ | $\begin{aligned} & 98 \\ & 96 \end{aligned}$ | - |  |  |  |  |  |  |  |  |  |  |  |
| TI-1 | $a_{4}$ | 51 39 | 72 | $\begin{aligned} & 69 \\ & 68 \end{aligned}$ | - |  |  |  |  |  |  |  |  |  |  |
| TI-2 | $a_{5}$ | 46 | 63 | 66 | $\begin{aligned} & 80 \\ & 83 \end{aligned}$ | - |  |  |  |  |  |  |  |  |  |
| TI | $a_{6}$ | 51 | 72 | 71 | 96 96 | 94 | - |  |  |  |  |  |  |  |  |
| F3-1 | $a_{7}$ | 75 | 93 | 91 | 70 | 62 | 70 81 | - |  |  |  |  |  |  |  |
| FS-2 | $a_{0}$ | 68 | 91 | 87 85 | 71 | 63 | 71 85 | $\begin{aligned} & 91 \\ & 89 \end{aligned}$ | - |  |  |  |  |  |  |
| F3 | $a_{0}$ | 74 | 94 | 92 | 72 | 64 | 72 85 | 99 99 | 97 96 | - |  |  |  |  |  |
| CR-1 | $a_{10}$ | 52 30 | 61 43 | 56 30 | 37 | 13 | 28 30 | 72 59 | 60 | 69 56 | - |  |  |  |  |
| CR-2 | $a_{11}$ | 73 | 818 | 81 78 | 58 | 52 | 58 | 93 92 | 70 67 | 86 85 | 71 59 | - |  |  |  |
| CR | $a_{12}$ | 68 56 | 80 | 77 | 55 63 | 41 56 | 51 | 92 92 | 72 | 86 | 87 79 | 95 95 | - |  |  |
| $\mathrm{OP}-\mathrm{H}$ | $a_{13}$ | 45 43 | 29 15 | 37 27 | 21 -2 | 38 26 | 30 1.1 | 18 9 | 13 7 | 16 9 | 9 -2 | 22 | 16 7 | - |  |
| OR-L | $a_{14}$ | 43 | 67 | 67 | 51 44 | 46 51 | 52 | 65 | 67 | 67 70 | 44 38 | 50 | 54 51 | 23 13 | - |
| Or | $a_{15}$ | 51 39 | 56 47 | 61 53 | 42 | 49 | 48 | 45 37 | 45 | 46 40 | 30 18 | 37 25 | 37 27 | 77 75 | 73 65 |

calculation is independent of the absolute threshold. Inabmuch as the temporal and critical band aspects of hearing are not related in any obvious way (that is, they are conceptually orthogonal) a zero correlation would be expected, or at most a low value if there were (second-ordar) level dopendent effects. From these considerations, Tr-2 emerges ass probably the truer measure of temporal impaiment than Tr-1 (Zwicker's measures for the present subject group. By extension, the artificial combined measure TI, which derives from the same modulated-noise threshold in two arithmetically different wayn, is not to be preferred.

In the case of the frequency selectivity measures FS-1 and FS-2, the pattern of correlations with the other variables is identical. The only distinction is that the correlation coefficients against $\operatorname{HITL}$ and $C R$ are slightly larger in the case of FS-1. This again is probably due to the fact that FS-1 is decived from a single masked threahold and thus more influenced by the subjects' absolute sensitivity (friL) than is the case With FS-2 which results from a difference (unmasking due to suppression of part of the masker spectrum). This suggests a preference for the measure FS-2, a conclusion which already emerged from the discussion in chapter 6.4.1.

In summary, the simple correlation analysis points to the elimination of the meagurea $T[-1, F S-1$ and $C R-2$, and to the probability that OF-H Will not figure at all prominently in corcelations with the performance measures (see Chapter 6.4.4).

### 6.4.3 Intercorrelations between the performance measures

Differences in the relative performance at speech audiometry in quiet (SAQ) and noise (SAN) as between normals and persons with sensorineural impairmentg have frequently been reported in the llterature, and attributed to the influence of speech diatortion occasioned by deficits in frequency selectivity, temporal resolutiona and spatial discrimination. This is not to say, however, that the results of $S A Q$ would not be highly correlated in a population occupying a continuum from normal through varying degrees of senaorineural hearing loas. Table 30 shows that this correlation was in fact high, $r=0.84$ for the combined group $Y N+N r, 0.86$ for group $N I$ alone.

Turning to tho aimulations, Table $3 \mathfrak{g}$ shows that the intercorrelations ate all highly significant ( $p<0.01$ or $p<0.001$ ), but the actual magnitudes of the coefficiente (0.54-0.71) are not particularly large which indicates that different faculties were to some extent being tested, in accordance with the intention of tho teats, Differences between the tasks in these sjmulations included the factors of listening condition, audiovisual as opposed to purely audible presentation, a variety of dietracting soundo, high fidelity versub pre-distorted speech, different respones modes, and so on, Against this, they all shared a similarity to SAN in that the target material was apeech presented in acousticalily adverse conditions. In this respect they all differed from SAQ. However, a striking feature of the results seen in Table 38 is that the aimulations as a wholo cotzelated mote clobely with SAQ than with SAN (being nonsignificant for group Nr in each case against SAN, even for the combined 3-Binulation measure $p_{10}$ ). There is no obvious explanation for these apparently anomalous results.

## Table 38: Correlation coefficients between the performance measures (speech audiometry and simulations) ( $\times 100$ ) <br> Upper Eigures; NI + YN group ( $n=44$ ) <br> lower figures: NI group alone ( $n=24$ )

| Measure |  | $\mathrm{P}_{2} \mathrm{O}$ | $\mathrm{P}_{21}$ | $\mathrm{P}_{26}$ | P17 | $\mathrm{P}_{18}$ | P10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SAQ | P20 | - |  |  |  |  |  |
| SAN | $\mathbf{p}_{21}$ | $\begin{aligned} & 84 \\ & 86 \end{aligned}$ | - |  |  |  |  |
| Sim. 1 | $P_{18}$ | 43 34 | 46 38 | - |  |  |  |
| Sim. 2 | $\mathbf{P}_{17}$ | 45 30 | 36 20 | $\begin{aligned} & 71 \\ & 54 \end{aligned}$ | - |  |  |
| Sim. 3 | $P_{1 n}$ | 48 41 | 30 | 57 62 | 60 57 | - |  |
| All simb. | $P_{10}$ | $\begin{aligned} & 52 \\ & 41 \end{aligned}$ | $\begin{aligned} & 44 \\ & 32 \end{aligned}$ | $\begin{aligned} & 89 \\ & 87 \end{aligned}$ | 90 83 | 80 | - |

These results are given in Table 39 , with the audiological measures reduced in number as already described.

The pattern that emerges for the combined group is as follows:


Less highly correlated: Sim. 3 vs TI-2
Non-significant or
uncortelated: SAQ vs CR-1, OF-工,
SAN Vs PS-2, CR-1, OF-L

Sim. 1 vs TI-2
Sim. 2 vs TI-2

The pattern of the correlation coefficients is similar for the NI group alone but the values are all smaller and in several cases they are non-significant where the value for the combined group was significant or nighly significant.

It ia intereating to note that sAQ correlates more highly with the fir values than does SAN, a wall-known result, and that the correspondence in both cases is closor with $H_{123}$ than with $H_{34}$, curiously exactly the opposite applies to the simulations; the performance in each case correlates more highly with $\boldsymbol{F}_{3+4}$ than with $\boldsymbol{F}_{123}$.

The tesults in Table 39 embody some of the principal data of this study, They indicate that the principal determinants at the speech performance tasks are the pure-tone thresholds and the frequency selectivity parameters, with the temporal impairment index more weakly, although positively, related. The pattern ia markediy different for both modes of epeech audiometry.

### 6.4.5 Intercorfelations between the selt-assessments

Theme correlations are given in Table 40. It is apparent that there is a highly significant association between the two parts ( $D$ and $B$ ) of each questionnaire section, as well as between sections $I$ and II as a whole. IMis indicates a good meagure of consistency but a want of distinction between the reaponses to quegtions intended to reflect disabilities and handicap respectively.

All values in the rable are very highly aignificant ( $p<0.001$ ).

Table 39: Corzelation coefficients between performance and belected audiological neasures ( $\times$ 100)
Upper figuresi NI + YN group ( $n=44$ )
lower figures: NI group alone ( $n=24$ )


For critical values of 100 r , see Chapter 6.4.2.

Table 40: Correlation coefficients between the self-assessments by
questionnaires $(x 100)$

Upper figures: $N I+Y N$ group $(n=44)$

lower figures: NI group alone $(n=24)$


Queationnaire
Section $I \quad n_{23} \quad 87$
(hearing in
$\begin{array}{lllll}\text { general) } & B_{24}{ }^{*} & 96 & 97 & - \\ & & 94 & 96 & -\end{array}$
82 -

| Questionnaire | $a_{25}$ | 74 | 80 | 79 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 69 | 77 | 77 | - |  |  |
| Section II |  | 57 | 61 | 52 | 71 | - |  |
| (hearing in | $\mathrm{H}_{26}$ | 63 | 68 | 69 | 81 | -- |  |
| particular |  | 76 | 78 | 80 | 95 | 85 | "- |
| gituations) | $\boldsymbol{0}_{27}$ | 76 | 78 | 91 | 97 | 87 | - |

* IThe measures $s$ embrace both the disability ( $(\alpha)$ and handicap ( $n$ ) meabures in each Section.


### 6.4.6 Corzelations between self-assessments and performance measures

These reaults are given in Table 41 for the combined group $Y N+N I$ and group NI alone. The pattern that emerges for the combined group is one of highly significant correlations (p < 0.01 or $p<0.001$ ) for all assegments from section $I$ of the questionnaire and for the total assesment from Section II, against all of the performance measures, The $D$ questions from Section II ( $d_{2 s}$ ) also correlate highly with all performance measures except SAN, and this case is still significant at a lower level ( $P$ ( 0.05 ). Correlation coefficients for the $A$ questions of section $I\left(h_{2 a}\right)$ are, however, consistently lower than for the $D$ questions: $h_{20}$ va SAN is not significant, whilat againgt the other performance measures it is aignificant at $p<0.05$ or better.

A faic measure of association 18 thus cemonatrated between the salf-asseasments and the performance, The numerical values of the correlation coffeicients are nevertheless not large (typically 0.5) so that any relationsinip can only bo asterted on a population basist large individual diacrepancies are evident in the data.

Table 4l: Correlation coefficients between perfonmance and self-assessments ( $\times 100$ )
Upper figures: NT + YN group ( $n=44$ ) lower figures: NI group alone ( $n=24$ )

| performanco measuros |  |  | Solf-assesaments |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Questionnaico |  | Section 1 | Questionnaire |  | section II |  |
|  |  |  | $d_{22}$ | $\mathrm{n}_{2}$ | 324 | $d_{2 s}$ | $h_{20}$ | $3_{27}$ |  |
| SAQ |  | $P_{20}$ | 55 | 48 | 53 | 46 | 30 | 49 |  |
|  |  |  | 41 | 33 | 30 | 33 | 20 | 38 |  |
| SAN |  | $P_{21}$ | 44 | 41 | 44 | 35 | 25 | 38 |  |
|  |  |  | 37 | 32 | 36 | 29 | 13 | 31 |  |
| Sim. |  | $P_{18}$ | 51 | 48 | 52 | 42 | 33 | 44 |  |
|  |  |  | 22 | 24 | 24 | 28 | 31 | 35 |  |
| sim. |  | $P_{17}$ | 48 | 43 | 47 | 44 | 31 | 42 |  |
|  |  |  | -2 | 1 | 0 | 20 | 22 | 21 |  |
| Sim. |  | $P_{18}$ | 46 | 40 | 44 | 49 | 39 | 51 |  |
|  |  |  | 24 | 27 | 27 | 39 | 42 | 46 |  |
| All Sima. |  | $P_{10}$ | 56 | 51 | 55 | 51 | 39 | 52 |  |
|  |  | 10 | 20 | 20 | 34 | 37 | 39 |  |

The pattern of the correlation coefficients for the NI group alone is, with one exception, similar to that for the combined group, but the numerical values are smaller (though positive) and only attain significance in a few cases ( $r$ > 0.39 ). The exception is the correlation between Simulation 2 (public announcements) and questionnaire section I (hearing in general). Both for $d_{22}$ and $H_{23}$ (and consequently for the aggregate self-assessment $s_{24}$ ), there is apparently a total absence of correlation ( r < 0.02).

It might have been expected that the performance in three particular situations (the simulations) would have been more closely correlated with the self-assessment under section II of the questionnaire which likewise related to particular situations than with Section I. No auch picture emerges from Table 41, however. More particularly, there might have been a closer relation between the Section II self-assessment on situations B, C and $G$ and the performance at the three corresponding simulations. The relevant data are presented in rable 42 for the combined group YN + NI. The correlation coefficients for situations $\mathrm{B}-\mathrm{C}-\mathrm{G}$ alone are in all cabes smaller than for the whole 9 -situation self-assessment, and markedly so for the sub-section of $B$ questions ( $h_{32}$ compared with $h_{20}$, against each simulation and all simulations). The values for $d_{31}$ and $s_{3}$, all remain nighly significant ( $p<0.01$ ) but are all non-significant for $h_{32}$. it is clear that detailed examination of the questionnaire responses at this level of sub-division is unrewarding.

Table 42: Correlation coefficients from combined group YN + NI between performance at the simulations and the self-assessment of disability and handicap in three corresponding situations B-C-G ( $\times 100$ )

Values for the self-assessments on all 9 situations, extracted from table 41, are shown for comparison in parentheses

|  | $\begin{gathered} D \text {-questions } \\ a_{31} \end{gathered}$ | $\begin{gathered} \text { A-questions } \\ n_{32} \end{gathered}$ | $\begin{gathered} D+A \\ 5_{33} \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| sim. 1 | 41 (51) | 20 (48) | 40 (52) |
| Sim. 2 | 44 (48) | 13 (43) | 40 (47) |
| 5 im .3 | 42 (46) | 15 (40) | 39 (44) |
| All Simb. | 48 (56) | 19(51) | 45 (55) |

## 6,4.7 prediction of performance by multiple correlations

Mutliple correlations between the $p$ and $a$ variables and between the $p$ and $g$ variables were carried out by means of the STEPREG computer program. Ihis firat computes the linear regression between the dependent variable (one or other of the $p$ variables) and the most highly correlated of the independent variables, It then computes the linear regressions, taking in the first already calculated, for each of the remaining independent variablea and selects that for which the F-ratio (variance explained by regression/residual variance about the regression function) is greatest. It proceeds similarly until all variables are included. The gignificance of including any of the independent variables after the first can be teated by the ratio of explained variances after and before ita inclusion.

### 6.4.7.1 predtetton from audtalogical measures

The dependent variablas were individually the indices $p_{20}$ (SAQ), $P_{21}$ (SAN), $p_{16}$ (simulation 1 ), $p_{17}$ (simulation 2), $p_{s A}$ (simulation 3) and $p_{1 \theta}$ (all aimulations), and the multiple independent variables chosen were $a_{2}$ $\left(H_{123}\right), a_{3}\left(H_{340}\right), a_{5}(T I-2), a_{0}\left(F^{\prime} \mathrm{S}-2\right), a_{10}(C R-1)$ and $a_{14}(O F-L)$, uaing the mean ear values.

In the case of SAQ and SAN, the firgt independent variable selected was $a_{2}$ because that gave the greatest correlation (Table 39). In both cases the next variable, selected by program, was $a_{10}$ (the critical ratio measure) with highly significant p-ratios ( $p<0.01$ for $s A Q, p<0.001$ for SAN). No furthor variablen were individually gignificant, although 7\% additional vaxiance could be accounted for in SAN by running the program to ita termination.

The regrebgion equations ahowed, howevar, that the coefficients for $a_{10}$ were negative, in both cases. This result poirits to the existence of non-linear relations between the dependent and independent variablea (aince both $a_{2}$ and $a_{10}$ individually correlated positively and significantily with SAQ and SAN).

In the cafo of the simulationa, the firat variable was $a_{3}\left(H_{34}\right)$. For simulations 1 and 2 (social gathering and public announcementa, reppectively, and for all-gimulations, the second variable selected by STEPTEG was $a_{5}(m I-2)$, no significant second variable was found for simulation 3 (telephone listoning in noise). Again it was found that the coefficient of the second variable was negative in each cage, presumably for the axme reamon as before.

An abbreviated aumary of these atepwise multiple regressions ia given in Table 43, together with the regression formulae re-expressed in terms of the original measured quantities. The incxement in explained variance on introducing tho second independent variable is appreciable in each case (excluding simulation 3), but not atatiotically aignificanti $p=0.05$ requires a variance ratio exceeding 1.6 for DF 41,40 and the greatast occurring value was 1.26 (in the case of SAN). Howaver, the persistence of the pattern of the selected variables guggests an underlying common factor in the aggregate.

Table 43: Summazy of multiple correlation and regression analysis between performance scores and audiological measurea, for the combined group $Y N+N I(n=44)$

| Dependent variable | Measure | Independent variables | Explained variance (8) | Regression formula for \% error acore |
| :---: | :---: | :---: | :---: | :---: |
| $P_{20}$ | SAQ | $\begin{array}{ll} a_{2} & \\ a_{2}, & a_{20} \\ \text { Ail } & a \end{array}$ | $\begin{aligned} & 69.1 \\ & 76.0 \\ & 76.4 \end{aligned}$ | $\begin{aligned} & 6.45+0.833 H_{123} \\ & 31.74+0.991 R_{123}-0.985(C R-1) \end{aligned}$ |
| $P_{21}$ | SAN | $\begin{array}{ll} a_{2} \\ a_{2}, & a_{10} \\ \text { A1: } & a \end{array}$ | $\begin{aligned} & 47.2 \\ & 59.6 \\ & 66.8 \end{aligned}$ | $\begin{gathered} 18.92+0.742 H_{123} \\ 55.54+0.975 H_{123}-1.427(\mathrm{CR}-1) \\ - \end{gathered}$ |
| $P_{1 n}$ | Sim. 1 | $\begin{array}{ll} a_{3} \\ a_{3}, & a_{5} \\ \text { A11 } & a \end{array}$ | $\begin{aligned} & 44.0 \\ & 50.5 \\ & 53.8 \end{aligned}$ | $\begin{aligned} & 14.36+0.395 H_{348} \\ & 22.66+0.527 H_{340}-1.023(T I-2) \end{aligned}$ |
| $p_{17}$ | Sim. 2 | $\begin{aligned} & a_{3} \\ & a_{3}, \\ & a_{5} \\ & \mathrm{~A} 11 \end{aligned}$ | $\begin{aligned} & 37.5 \\ & 45.5 \\ & 47.8 \end{aligned}$ | $\begin{aligned} & 29.87+0.634 H_{340} \\ & 8.06+0.898 H_{348}-1.964(\mathrm{TI}-2) \end{aligned}$ <br> - |
| $P_{1}$ | Sim. 3 | $\begin{aligned} & a_{3} \\ & \text { A11 } a \end{aligned}$ | $\begin{aligned} & 35.7 \\ & 39.2 \end{aligned}$ | $16.92+0.386 H_{346}$ |
| $P_{20}$ | All <br> simb. | $\begin{array}{ll} a_{3} \\ a_{3} & a_{5} \\ \text { Ail } & a \end{array}$ | $\begin{aligned} & 51.7 \\ & 58.2 \\ & 60.9 \end{aligned}$ |  |

* A total score for all simulations in un-normalized units cannot unefully be defined; $p_{i \theta}$ is a composite of normalized acores ( nee rable 19).

Notel The regression formulae in one variable give only broad-brush indications of the trends. The variables are not linearly related (see mapter 7.3). The regreseion formulae in two variables represent a closer fit to the experimental data but lack meaningful interpretation, the negative coefficienta being artefactual.

The key findings that emerge from this analysis are as follows:

1. Both modes of speech audiometry are better represented by $H_{123}$ than by $\mathrm{H}_{34} \mathrm{O}$ the converge applies to the simulated situations.
2. Prequency selectivity does not appear explicitiy in any of the regreasion formulae.
3. SAN is a slightly weaker function of hearing threshold level than SAQ. The mean rate of deterioration is of the order $0.0 \%$ of phonemes per decibel.
4. Errora at Simulations 1 and 3 (both name-and-address taska) are almost identical functions of hearing threshold level (nigh fxequencies). The mean overall rate of deterioxation (about 0.48 per decibel) is only half that for the CVC material of the speech audiomatry, but this reflects the influence of the 'easy' (limited vocabulary) elementa, for the difficult parta the rate would be much higher (see rables 23 and 25).
5. Errors at Simulation 2 (public announcements) have a stronger dependence on hearing threshold level, comparable with the apeech audiometry.
6. About $3 / 4$ of the variance in $\operatorname{SAQ}$ and $2 / 3$ of that in SAN can be accounted for by the audiological measures; for the aggregate of the simulations the fraction is about $3 / 5$.
7. The correlation coefficients are bufficiently large to permit reagonably confident group predictions.

### 6.4.7.2 Pradiction from solf-asgossments

Calculationa aimilar to those above were carried out with the self-assessments as the independent variables, in the first case with the four variables $d_{22}, h_{23}, d_{25}$ and $h_{20}$, and in the gecond case with the two composite variablos $a_{24}$ and $s_{27}$. AB may be aeen from table $11, d_{n 2}$ and $s_{26}$ are the leading correlands in each performance test except simulation 3 . Inclusion of a bacond variable in no case increased the explained variance appreciably, indicating that the various parta of the self-assessment were moasuring edsentially the same thing. In the resulting regression formulae the coefficients of the second variable were all positive, if included, but tho p-ratio tests in the sTEPREG program were far below the significant level at gtep 2.

Since they ghed no additional light on the interpretation of the data, the four-factor reaules are omitted here. Table 44 simmarizes the results of the two-composite-mensure regressions. It shows that the "particular situations" questionnaire was rather less successful than the "general lowiting" questionnaite in predicting performance (with the exception of Simulation 3). This was not the expected result and is rather diaappointing in view of the thought and labour lavished on ite creation. The explained variance rangen from 20 to $32 \%$ only, which can be regarded as a devastating commentary on the value of the questionnaires if the object were to employ them to assess people's hearing capability without actually testing it.

Table 44: Sumary of the 1-factior and 2-factor regression analysis
between performance scores and self-assessments, for the combined group YN + NI (n = 44)

| Dependent variable | Measure | Independent variable | Explained variance (\%) |
| :---: | :---: | :---: | :---: |
| $\mathrm{P}_{20}$ | SAQ | $\mathrm{s}_{24}$ | 28.2 |
|  |  | ${ }^{3} 27$ | 23.8 |
|  |  | Both | 29.4 |
| $p_{21}$ | SAN | $\mathrm{s}_{24}$ | 19.8 |
|  |  | $3_{27}$ | 14.3 |
|  |  | Both | 19.9 |
| $p_{10}$ | Sim. 1 | $\mathrm{s}_{24}$ | 26.8 |
|  |  | $\mathrm{Sa7}_{27}$ | 19.3 |
|  |  | Both | 27.0 |
| $P_{1}{ }^{\prime}$ | Sim. 2 | 924 | 22.2 |
|  |  | $3_{27}$ | 17.7 |
|  |  | Both | 22.8 |
| P2A | Sim. 3 | $s_{24}$ | 19.7 |
|  |  | $\mathrm{Sa}_{2}$ | 26.0 |
|  |  | Both | 26.4 |
| $P_{10}$ | All sims, | $0_{24}$ | 30.4 |
|  |  | 327 | 269 |
|  |  | Both | 32.1 |

6.5 Resulte for the older group with normal hearing (OW)

The subject group on consisted of 6 females and 4 males with 'clean' otological and environmental histories, save for war-time (small-arms) exposure on the part of three of the males. The mean ane was 58 years (range 5l-65).

They were teated in an identical manner to the subjecta of the YN and NI groups.

### 6.5.1 Pure-tone audiometry

The resulte of the pure-tone audiometry are sumarized in Table 45 (valueg given are corrected for audiometer calbration).

Table 45: Sumary of results of puretone audiometry for group on ( $n=10$ )

|  |  | Hearing threshold level re rSo 389 ( CB ) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.5 | 1 | 2 | 3 | 4 | 6 | 8 KHz |
| Mean | left eara | 0.4 | 8.5 | 15.2 | 16.7 | 19.6 | 26.8 | 31.0 |
|  | right eara | 9.5 | 9,1 | 11.4 | 14.9 | 18.3 | 25.4 | 32.1 |
| 30 | left eara | 8.8 | 6.6 | 12.3 | 22.6 | 34.2 | 15.4 | 20.1 |
|  | right ears | 4.6 | 6,3 | 8.5 | 7.9 | J0.1 | 15.6 | 22.0 |

The typicality of this group, and the relation of their mean hearing threshold levels to those of the $Y N$ and NI groups, are illustrated in Table 46 . Here the results are expressed relative to the $Y N$ group, and in the last row of the Dable they are compared with the standardized values (ISO, 1982b) for the median of an otologically noxmal population aged 5B years, weighted $6 P / 4 \mathrm{M}$. The correspondence is remarkably close, considering the aize of the group.

Table 46: Comparigon of hearing threanold levels of the three test groups and standardized presbyacusis data for an otologically normal population with the same mean age as group ON

Group Relative mean hearing threshold level ( $L / R$ av)

|  | 0.5 | 1 | 2 | 3 | 4 | 6 | 8 kHz |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YN (datum) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| NL | 10.2 | 31.5 | 38.8 | 23.2 | 27.6 | 32.3 | 30.9 |
| ON | 9.9 | 7.4 | 23.9 | 36.2 | 39.4 | 24.3 | 26.0 |
| Standard population | 5.6 | 6.4 | 10.2 | 14.6 | 18.9 | 23.0 | 28.5 |
| aged 58 years |  |  |  |  |  |  |  |

Although only a vestigial notch appears in the mean audiogram of the noise-impaired group, it is entirely abeent from the oN group, for which the hearing threshold levels increase progressively at the high frequency end, otherwise the threshold levels of the two groups are of the game order of magnitude. The hearing threshold levels of the NI group, however, are up to four times greater than would be accounted for on the basis of presbyacusis alone (using the median of the standardized data for age 45 years, weighted $23 \mathrm{M} / 1 \mathrm{~F}$, as the criterion). At 3 kHz , for examplo, the observed threshold elevation of 23.2 dB compares with a standardized presbyacusis value of 8.3 dB , These findings serve to confirm the validity of the group descriptions as "noise-impaired" and "older nozmals" respectively.

### 6.5.2 Main test regults

The results of all tests on the on group are presented in summary form in Table 47, where they are compared directly with those of the YN and NI groups. The teats of temporal resolution, frequency selectivity and critical ratio are represented by the preferred measurea already diecusaed.

The rable reveals a number of features (see below), the most striking of which is that, despite actual impaiment and loss of performance, the oN subjects conaidered their own hearing to be nokmal. The diatinction batween the ON and NI groupg on temporal impairment is alao noteworthy: thia faculty does not appear to be influenced by age alone.

| ON rebentles NI ins | HTI, PS, SAQ, SAN and all three simulationa, |
| :---: | :---: |
| ON remembles XN ins | TI, OF-R and all self-absesgments; |
| ON is intermediate in: | CR ${ }^{\text {l }}$ |
| ON is worse than NI in: | $\mathrm{OH}-\mathrm{L}$. |

```
Table 47: Comparison of summarized test results for
        groups YN, NI and ON
        (Standard deviations for the measures marked *
        are for left-right ear averages)
```



### 6.6 Subjocts' amondments to self-assassments

Section $I I I$ of the questionnaire, administered in parts immediately following each of the three simulations, afforded subjects the opportunity to revise theix assessments (made prior to the aimulation tasks) of the three corresponding situations (B, $C, G)$ presented in Section II of the questionnaire. The latter contained a total of 13 questions, and on average (over all subjects) there were reaponse amendments to 2 of these, the proportion being highest among the ON group.

Table 48 shows how the changes were distributed between groups, questions and situations. Changes had not been expected in response to Qn.l (since that depended on past experience) and few changes were volunteered.

Question 2: For situation $B$, all the changes were in the direction of a higher acore (with the exception of one aubject in group NI), that is, they had previously overestimated their ability to "clearly hear the person opposite". The same applied (again with one exception) to Situation $C$, and to Situation $G$ (with no exceptions).

Queation 3: Scores were in all cases increased by the addition of one or more categories of particular difficulty. In Situation $B$, all the oN group changes involved at least the addition of "having to concentrate hard", and in situation $C$ the most popular additions throughout the three subject groups were "background noise" and "catching the important words".

Question 4: Changes were few in Situations $B$ and $C$. One subject each in the NI and YN groups changed the reaponse to "get anxious" in Situation C. There was no sybtomatic pattern to the changed responses in Situation $G$.

Question 5: All the changes here indicated that nearing difficulties in this situation (B) mattered more than the aubjects had previousiy stated.

These resulta show rather clearly that self-assessment, in the absence of demonetration, tends to be optimistic and appreciably more so for the older otologically normal subjects than for those with a history of noise exposure, This distinction is confirmed by the disparity between the on and NI self-asseasment ratings in the last block of Table 47.

```
Table 48: Quegtionnaire Section III: a posteriori amendments
```

    to responaes on Section II.
    |  | Qn. 1 | \% of subject group making changes |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Qn. 2 | Qn. 3 | Qn. 4 | Qn. 5 |
| Situation $B$ (social gathering) |  |  |  |  |  |
| YN | 0 | 0 | 30 | 10 | 10 |
| NI | 4.2 | 20.8 | 37.5 | 4.2 | 12.5 |
| ON | 0 | 10 | 50 | 10 | 0 |
| Situation C (announcementa in a concourse) |  |  |  |  |  |
| XN | 0 | 10 | 40 | 5 | - |
| NI | 0 | 20.8 | 29.2 | 4.2 | - |
| ON | 10 | 30 | 50 | 0 | - |
| ```Situation G (telephone listening in noise)``` |  |  |  |  |  |
| YN | 0 | 5 | 30 | 25 | - |
| NI | 4.2 | 20.8 | 33.3 | 25 | - |
| ON | 0 | 20 | 40 | 40 | - |

Qn. $1 \quad \rightarrow \quad$ familiarity with situation
Qn. 2 - audibility
Qn. 3 - particular difficulties
Qn. 4 - reaction to aifficulty
Qn. 5 - "how much does it matterp" (not asked for situations $C$ and $G$ )
(For details of questions, see Appendix F )

## 7. INTERPRRETATION OP RESUTIS

## 7.1 clartftcation of concepts

Distinctions between impairment, disability and handicap were drawn at the outset of this report, and maintained in categorizing the tests performed. The purpose has been to attempt a determination of the boundary between normal and non-normal in respect of these categories and to relate one to the other. In this context, terms such as 'low fence', 'threshold of disability', 'onaet of handicap', etc. can be convenient shorthand but they must be given some precise meaning in relation to the teats performed. In the following sub-chapters each basic concept is discussed and applied to the experimental results.

### 7.2 Throshold of tmpatrmont

Here one is faced with alternative intepretations, on at least two counts. Using the concige definition of impairment (to hearing) as 'loss or abnormality of the functioning of the ear' we must immediately abandon the first in the present context. A loss can only be asserted if one knows both the initial and final states, the difference being that which is lost, and this cannot be determined from examination of the final state alone. Turning to 'abnormal', it is obvious that this condition can only be asserted if one knows what is normal, and this in turn implies the existence of a homogeneous population-based norm, with unavoidable statiotical overtones. However, this is insufficient. Common sense telis us that what is clearly abnormal at the age of 18 (for example, a pure-tone hearing thzeshold level of 40 dB ) may be quite commonplace at the age of 70. Abnormality, therefore, might be taken to depend on certain variables, of which age is the obvious example, and accordingly the threshold of impairment would also depend on these. It is important to note that there is a certain contradiction between the definition (in section 1) and its elaboration in the text (gection 4) of the who (1980) publication. In the latter place degrees of impairment are asserted as Eixed ranges of hearing threuhold level, implying that aged pereons have impaired hearing. This may accord with everyday notions but it does not accord with the notion that auch persons are abnormal. A consequence of accepting the fixed criterion (in effect, the young otologically normal as baseline) is that 'impairment' in the general population - on this definition - tends to be so prevalent as to debase the term. However, we do not preaume to resolve this quastion here but will sidestep it by introducing the sub-categories of imporfection and abnormality. The thresholds of these are respectively fixed and age-dependent, and in either case are to be defined in terms of a specified fractile of the relevant baseline population. Herein lies the second aspect of alternative interpretations which fractile ghould bo selected to represent the boundary of 'perfection' or 'nomality'? in principle these thresholds could be given along each 'dimension' of the audiological tents but the interpretation of the present results and comparison with exigting data is best served by reference to the average hearing threshold levels, specifically $H_{123}$ LR and $H_{340}$ LR.

Pigure 8 illugtratea the relevant information. The relation between HIT, age and fractile of population has been derived from the standardized preabyacusis data (ISO, 1982b) as tabulated by SHIPTON (1979). The values illustrated are for a male population which excludes overt aural pathology
and significant noise exposure (for details of the original data and procedure used in arriving at the standardized values, see ROBINSON and sUMTON, 1978 and 1979). In the references cited, dispersion data are only given for left/right ear averages at individual frequencies. Examination of a mass of comparable data has shown that the dispersion of 3 -frequency average values is markedly smaller and can be summarized as approximately $2 / 3$ of the mean value for the constituent frequencies. This factor has been applied to produce Figure 8 . It turns out that by using a non-linear scale of age the whole diagram reduces to straight lines.


Pigure 8: Distributions of hearing threahold levels as function of age, illuatrating thresholds of imperfection and abnomality. Experimental data for groups YN and ON are shown to left and right of each diagram (data are true hearing threshold zevels). Extreme percentiles for group on are extrapolated.

The thresholds of imperfection and abnormality may be defined respectively as the dotted lines and the and percentile lines, The existence of hearing threshold levels exceeding these thresholds implies a (highly probable) real deviation from the reapective baseline, but whether this is of any consequence depends on whether it is above or below the level of the disability threahold (gee below).

The experimental data for groups $Y N$ and $O N$ are included on Figure 8 and are seen to conform well to the model for the respective mean ages (24 and 50 Yr ). Whereas YN and ON were both homogeneous groups, this did not apply to NI. The distribution of hearing threshold levels in this group, being adventitious, is of no particular interest here and it is not shown in this Figure.

### 7.3 Throshold of disabiltty

Here again one receives a mixture of enlightenment and ambiguity from the WHO classification. Disability is given as "any restriction or lack (remulting from an impaiment) of ability to perform an activity in the manner or within the range considexed normal for a numan boing" (our 1talics). As above, what might be considered normal for one human being might be considered exceptional for another, for example where the activity is developmentaliy zelated as in the understanding of speech. In the epecific clasalfication of disabilities (section 3,2), the items relating to communcation by hearing are given as "loas or reduction of the ability to receivo verbal messages" or "other audible messages". Por reamons exactly parallel to those above, it is useful to introduce sub-categories, in this case, tnabtitty and abnormatity. The former implies an absolute deviation from young otologically nomnal performance, the latter a deviation from that of a baseline population matched to the individual in queation (e.g., by age). The correaponding thresholds are to be set by reference to the upper (poorest) performance limit within theae populations. In principle such thresholds can be found for any number of different activities which, in the present context, consisted of listening to and reproducing an assortment of spoken messages. The 'reproducing' was required to be exact in the case of the speech audiometry (SAD and SAN) and of Simulations 1 and 3 ; in simulation 2 redunduncy facilitated receiving the 'carrier' part of the mesgage without necessarily hearing every word but the scorable target item had to be perceived exactly.

It is also pextinent to question what is meant by "an activity" in the WHO definition. The corollary of this is that a person may be "disabled" on this definition - if his capability is out of nomal limits for a certain activity though he may be pefectly competent at all other activities of a human being. This is surely contrary to the ordinary underetanding of the word. The definition, thus, might better read : "Diabbility, for a given activity, is ... any restriction ... otc", but the corollary then is that there are as many potential 'disabilities' (but we prefer to gay 'inabilities' or 'abnormalities') as there are activities. Tho term diabbility might be better reserved for the notion of a constollation of inabilities affecting performance in a cognate range of activities, for example, the class of 'understanding spoken speech'. The difficulty of determining the threshold of disability, defined in this more general way, is how to weight the 'inabilities' in all the posaible circumstances, given that they are necessarily unequal (dependent, for
example, on speaker, acoustics, semantic content and numerous other variables). This inequality is exemplified in the present tests.

Figure 9 illustrates the results obtained, The distributions of exror rates at the five tasks were considerably skewed in some cases and estimation of the percentile pointg was accomplished by free-hand curve fitting, with the cumulative distribution transformed to the 'arithmetical. probability' scale.


Pigure 9: Divtribution of error scores at the five listening performance
 and abnormality. Scores for SAQ and SAN may bo read on eithor of tho left-hand scales (see Figure 10).

In all five cases, there is a large overlap between the $Y \mathbb{N}$ and $O N$ group distributions, more so than in the case of the hearing threshold levels. Although they are not much different at the low error-rate end, they diverge considerably at the upper end, that 18 , the threshold of abnormality rises sharply with age. In the case of simulation 2 (public announcements) it would appear that the threahold could reach the level of total inability to receive the messages correctly a little beyond the age of 60 years. This, though realistic, proved to be indeed a very difficult test for some subjects, and even for the young normals the inability threshold was around 50\% (as defined by the 2nd percentile).

In the cage of the sinulations, the errox-rate distributions, and hence the inability thresholds, apply only to the specific situations and tasks involved and cannot be directly compared with other data. The results can, however, be indirectly related to one another, as discussed in the next gub-chapter, The SAQ and SAN regults are suaceptible of more immediate interpretation, by transformation of the resulte into terms of conversational speech. Io do this the responses, originally scored as phoneme errorg, were re-scored as word errors, and thence converted to santence inteliligibility for conversational speech using established data (Medical Research Council, 1947). The steps in conversion are illustrated in Figure 20, and the results can be seen in Pigure 9 where alternative ordinate scales are shown for the SAQ and SAN diatributions, A usoful gauge point, quoted by HOOD and POOLE (1977), is the equivalence of 90\% sentence intelligibility and 408-correct word score on apeech audiometry, or 36\% phoneme error score on the present data. This error rate was not aurpassed by any subject in groups YN or on for the speech-in-quiet teats at 45 dB or 70 dB but it sharply distinguished iN from 0 N at 30 dB where


Figure 10: Relations between phoneme, word and sentence intelligibility scores in speech audiometry.
only $10 \%$ of the $Y N$ group failed against $70 \%$ of $O N$, In the speech-plusmoise test ( $S / \mathrm{N}$ ratio, +2 dB ), only one subject in yN against $50 \%$ of thoge in $O N$ failed by this oriterion.

It is obvious that the error rates in simulations of the kind employed here depend on the intimate details of the test gituations, and that the absolute values are not of primary interest, but rather the relative performance of the young normal group and that of the others. In order to make these comparisons the data require to be transformed to a unified scale in the mannex described in the following sub-chapter.

### 7.4 The low fence

The low fence may be regarded as a device for expressing the threshold of disability as an equivalent value in a scale of impairment (specifically, the scale of hearing thresnold level), the assumption underlying this being a high correlation. It is well known that this ditsumption failis in general for severe hearing losses, since such a relation established for conductive hearing loss (on the basis of speech intelligibility) does not fit in cases of sensorineural hearing loss, However, it has been shown rather convincingly (HOOD and pooLe, 1971) that this shortcoming scarcely applies in hearing loss amounting to less than 31 dB (average $0.5,1,2 \mathrm{kHz}$ ), Up to this level of sensorineural hearing loss, it appears that the speech audiogram is virtually indistinguishable from that in conductive hearing loss of the same amount, and unchanged in form from that of normal hearing,
previous studjes lave postulated low fence values ranging from 40 ds ( $R_{123}$ ) downwazds ( ) Tee Table 1) and recent research data have suggested values of 15 dB (SMDORENBURG ot at, 1981) or 17-19 dB (SUTER, 197B). We have demonstrated a fairly high correlation between hearing threshold levels and the performance tests (Table 39), The necessary conditions for translating the threshold of disability to an equivalent audiometric low fence are therefore broady gatisfied.

The relevant data are illugtrated in the series of Figures 11-20, Each pair of Eigures diaplaye the test scores for individual subjects in the YN and NI groupn plotted againgt $H_{2,3} L R$ and $H_{348} L R$ (true values). The oN group reault ia represented by the median coordinates.

At first glance, the large scatter appears rather unpromising but by a smoothing process it was posaible to extract the underlying relationehip between test score and hearing threahold level. Moving medians of scores were first determined in bands of 15 dB (25 dB at the high end where the data are sparse), overlapping at 5 dB intervals). These values are shown connected by the full line. The relationship was then approximated in the forn of two atraight lines (shown broken) fitted to these values, a horizontal portion at the level of the median score of the YN group, and a aloping portion fitted to the upper range of hearing threshold level. Their intersection forms a knee point to which further reference is made below. In several cabes the knee point could be pinpointed with some precision because the slope and intercept of the sloping portion were Insensitive to the inclusion or exclusion of data points (that is, medians) near the knee. The roughness of the data makes for some uncertainty in the case of simulation 2 , so that alternative lines are shown there is no
clear evidence of a horizontal portion in these cases, which is consigtent with error rate increasing continuously from the already high starting point given by the yN group, The length of the horizontal portion, where this exists, can be interpreted as the reserve of hearing for young nomals in the situation in question and it is evidently considerable for the speech audiometry in quiet. The erosion of the reserve for those with hearing thresholds between that of young normals and the knee point is no doubt accompanied by a psychic cost but does incur an actual performance penalty.

The level marked by the arrow on the right hand margin of each diagram is that of the 2nd percentile of the YN distribution, which is the threshold of inability as we nave defined it. By reading off the graph one arrives at an estimate of the corresponding hearing threshold level. In the case of SAQ us $H_{340}$, there might appear to be ambiguity due to the secondary plateau in the data; however, the evidence points to the higher value (read Erom the ateeper curve) because in the critical case one would expect the hearing threshold level at $3,4,6 \mathrm{kHz}$ to exceed that for the lower frequency combination, $1,2,3 \mathrm{kHz}$. It will be recalled that the correlation coefficient for SAN and SAQ was higher for $H_{223}$, which also predisposes to preferring Figure 11 . The resulting eatimates are given in Table 49, Values underlined are for the frequency combination with the higher correlation coefficient against test score.

Table 49: Estimatea of hearing threshold level at the inability threshold defined by the 2nd percentile of young normal performance

| Test | $\begin{gathered} \text { Hearing } \\ \text { HIR }_{12}^{L R} ; \end{gathered}$ | level $g_{340}^{\mathrm{LR}}$ |
| :---: | :---: | :---: |
| SAQ | 29 | 40 |
| SAN | 34 | >50 |
| Sim. 1 | 29 | 37 |
| sim. 2 | 27/30 | 29/30 |
| sim. 3 | 30 | 35 |

Before drawing conclusions from the numerical values in Table 49, some remarks should be made about the data. In the first place, there is a striking difference of slope of the relation above the knee point as between SAQ or SAN (ve $H_{123}$ ) and the remainder. Sccondly, the median score for the ON group is anomalously high relative to the KN/NI data both for SAg and SAN whereas it fits the curve reasonably well for the three simulations. Beyond encapsulating this in the statement that perception of phonemem appears to be somewhat more eroded by age than by a combination of noive and leaser age producing equivalent heaxing threahold levels, we can find no explanation. Thirdly, it ia important to note that the XN 2nd percentile performance in SMQ (14\% phoneme errors) is well inside the gauge point previously mentioned - in fact it implies only about 28 loss of sentence intelligibility (Figure 9). In the case of SAN, this percentile is only just above the gauge point (12\%). Consequently it could be argued that tho value inferred from the SAD tests (29 dB $H_{1}$ a3) Bhould bo discounted in favour of that From SAN (34 dB) (see Irable 49).


Pigure 11: Percent phoname error scoras at SAQ (speech audiometry in quiet, average of three levels) against henring threshold levele $\mathrm{f}_{12} \mathrm{~s}^{\mathrm{I} R}$ (average of $1,2,3 \mathrm{kgz}$, both ears).

Key: o Group YN, $x$ Group N: (individual values) Group ON (median valuas)

Line connecting thoving medians
Two-mtraight line approximation
The arrow at right indicates the and parcentile score for group YN.


Figure 12: Percent phoneme error scores at SAQ (speech audiometry in quiet, average of three levels) against hearing threbhold levels $\mathrm{H}_{346}{ }^{\mathrm{LRR}}$ (average of $3,4,6 \mathrm{kHz}$, both ears).

Key: see Figure 11.


Figure 13: Percent phoname orror scores at SAN (sprech audiometry at gpeach-to-noige ratio +2 dB ) againgt hearing threshold levels $H_{2 z 3}{ }^{\text {LR }}$ (average of $1,2,3 \mathrm{kHz}$, both ears).

Key: nee Figure 1.


Figure 1A: Percent phoneme arror acores at SAN (speech audiometry at speech-to noise ratio +2 aB) against hearing threshold level.s f $_{34} \mathrm{C}_{\mathrm{L}}$ (average of $3,4,6 \mathrm{kHz}$, both ears).

Key: gee Figure 12.


Pigure 15: Percent item arror scores at Simulation 1 (social gathering) againat hearing threahold levels $H_{12} 3^{\text {LR }}$ average of $1,2,3 \mathrm{kHz}$, both ears).

Key: age Figure 11.


Pigure 16: Percent item error scores at Simulation 1 (social gathering) against hearing threshold levels $H_{340} \mathrm{LR}$ (average of 3, 4, 5 kHz , both eara).

Key: see figure 11.


Figure 17: percant mabsage error acores at Simulation 2 (public adaress announcemente in a concourse) againgt hearing threshold level $H_{12} i^{\mathrm{T}, \mathrm{R}}$ (avorage of $2,2,3 \mathrm{kHz}$, both earg).

Key: weo pigure 1.1.
Note: The atraight line approximation in this case lacks, or ahows only vestigialiy, a horizontal gegmant.


Figure 18: Percent message arror scores at simulation 2 (public address announcements in a concourse) againet hearing threshold level $H_{340}{ }^{\text {LR }}$ (avarage of $3,4,6 \mathrm{kHz}$, both vars).

Key: see pigure 11.
Soe also Note to Figure 17.


Pigure 19: percent item error scores at Simulation 3 (telephone listoning in a noisy place) against hearing threshold levels $H_{123} \mathrm{LR}^{(a v e r a g e}$ of $1,2,3 \mathrm{KHz}$, both eiars).

Key; Bee Pigure 1.1.


Pigure 20: Percent item error gcores at simulation 3 (telephone 1istening in a noisy place) against hearing threahold leveln $H_{94} L_{R}$ (average of $3,4,6 \mathrm{kHz}$, both ears)

Key: see pigure 11.

Fourthly, the slope of a relation derived from group data does not necessarily coincide with that for individuals as their hearing declines; individual slopos might well be steeper but originate from different knee points. The reduced slopes for the simulations compared to the speech audiometry is partly explained by the smaller correlation oefficents, but there is probably another contributory factor. This is described by HOOD and poore (1971) to explain why deaf subjects show leas disability in understanding speech than would be expected from the audiogram;
"... it can be presumed that in normal circumstances the redundant information in speech adds little to its intelligibility. To the deaf subject, however, matters are very different and as his deafness increases he is obliged to capitalize on whatever speech information comes his way. Consequently in the courge of time he will learn to make use of minjmal clues ..."
and hence make less exrors than would a normal-hearing person suddenly arrived at this condition, or one for whom a reduction of the acoustic gignal were substituted for the hearing loss.

The fifth point to note is that the threshold estimates of inability in terms of $1,2,3 \mathrm{kHz}$ are fairly consistent. Bearing in mind the uncertainty of the value derivable from simulation 2 , the result might be stated as $31 \pm 3 \mathrm{~dB}$. The picture is less clear in terms of $3,4,6 \mathrm{kHz}$, but where the estimation is fairly well defined (SAQ, Sim. 1, Sim, 3) the value could be summarized as $38 \pm 2 \mathrm{~dB}$. This is quite consistent with the value of 31 dB at the lower frequencies. In fact a linear regression of $H_{34}{ }^{r_{1} R}$ on $H_{123}{ }^{5 R} R$ for the combined groups $Y N$ and $N I(n=44)$ yielded the relation:

$$
\pi_{340}^{L_{1} R}=1.05 H_{223}^{L_{1} R}+7.1 \mathrm{~dB}
$$

If the values were wholly consistent and independent of test situation it would happily dispose of the problem of weighting various inabilitieg, since the common value would uniquely identify the onset of disability. As it j.s, they are reasonably but not wholly consistent and independent*, and it ins imponsibise on the pregent data to determine whether this is a consequence of measurement uncertainty or a reflection of intrinsic differences of inability threshold in the various gituations. Certainly the latter are involved to some extent, as can be seen from the fact that the estimates would differ to a different extent if a percentile other than the and had been selected (because the slopes are unequal).
*Lest the apparently more 'permissible' value of 34 dB for san than the 29 dB for SAQ ( $H_{123} \mathrm{LR}$ ) should appear paradoxical in face of the well-known fact that speech hearing in nojse is more liable to erosion by aensorinouritl lusising loss than speech hearing in quiet, the actual values in Table 26 should be recalled. More errors were in fact committed in noise than in either of the quiet tests at speech levels of 45 and 70 dB , and almost the same number as at speech level 30 dB. The paradox resulta from the fact that the dispersion in SAN was considerably greater among the yN group than in SAQ. The SAQ results have been handled as an amalgam of the three speech-in-quiet conditions.

Specifically, the consistency would be diminished if one descended to the loth percentile, and at the knee points (SOth percentile) it would virtually evaporate. This, howaver, brings us to a very important point which requires a little digression.

If a task is fairly easy, both normal and mildly impaired persons may perform it without loss of performance - in which case there is no inability - or normals may perform without loss and the impaired persons With sone lose of ability, If the taok is sufficiently difficult, neither will perform it without lose of performance and both will extibit inability but in different degrees. so will persons with higher levels of impaiment. Hence diabbility cannot be inferred simply from inability, but only from the differential performance of the nomal and the impaired. That is why we have defined a threshold by reference to normal limite. If instead we had identified it as the knee point (in effect, the point at Which the slightest deviation from median normal performance is discernible - the conventional "low fence") we would arrive at the awward conclupion that the low fence for the gimulated (difficult) listening gituations is equal to (if not belowl) the hearing threehold level of tho young normal.

In the case of sAQ and SAN under our test conditions (and those of much previous work) this anomaly does not arise becauno the knee point happens to bo well above zero hearing threshold level (that ib, there is a reaervo of hearing for these situations). Hownver, it would arise for low epsech levels in quiet or for aufficiently adverso apeech-to-noise ration. Shades of this are presont, for excmple, in KRYTER's (1973) analyaio, in which he differentiates botweon a 10 w fence for "etart of hearing impaiment for speach at an "everyday' leval" and another, 10 de lower, for "convaraational apeech in the quiet". The knee pointes, in our viow, do not provide a logical foundation for a threshold of disability, aince they occur at different levols dopending on tho listening circumetances. The function of a 'low fence' should be, not to distinguish between ctrcumstancos, but botween pooplo. That purpose appeara to be better sorved on the principle of reference to the linits of nomal performance. It would nol bo necesaary to labour thia dietinction if the approach to finding the starting point of disability had not hitherto been equated to locating the 'foot of the curve'.
since our definition of the atarting point is at variance with ostablished practice, it seems prudent to modify the terminology, and, inetead of 'low fence' we ahall refer to 'hearing dibability threshold level' (HDNL) an a suitably explicit terin. The HDTL, than, io a value or valuea distilled from those in Table 49 to repreant the totality of the aituations, and the numbrical values to be absigned to it are provisionally 30 dB for $H_{123} \mathrm{IRR}^{2}, 38 \mathrm{~dB}$ for $H_{340} \mathrm{~L}_{\mathrm{N}}$. A question remaining is whother one should insert an 'and' or an 'or' between these two datum etatomenta (recaling that, although nighly correlatod at $r=0.84$, theos two quantities are not absolutoly predictive of one another).

What are the consequences of this proposed redafinition of the digability oneet point? In terms of the facte of nearing, nothing ie changoi, a compariaon of our epeech teat renults with those in the interaturo ehows them to be quite concordant. The main consequance is to ramove aom of the arbitrarineas that attaches to traditional 'low fencos', and thereby to reconcile conflicting opinions about numerical values which are found in the numeroue writinge on this topic, for example DAVIS (1973) commenting on Kryter's paper cited above.

A comprehensive account of the history of the low fence and the vicissitudes of its evolution is to be found in SUTER (1978). Some, at least, of the variety of formulae and values proposed has arisen from confusion of aims between clinical hearing assessment (in the individual compensation context) and the setting of noise limits via statistical predictions of hearing loss. This point has been caustically commented upon by WARD (1983), but such divergences can be resolved (see Chapter 7.5). Suter, however, also considers the more fundamental question of how to define the starting point of disability (she uses the term 'handicap' but clearly with the same meaning since her argument centres on performance at speech tests). After presenting a detailed analysis of the experimental results of her own study (see Chapter 3.6), she is driven to write: "The results of the (present) investigation have not resolved the question of the location of the point of beginning handicap, or the 'low fence'", the essence of the difficulty being that there is no clearly definable cut-off - "the fence cannot be viewed as a magical turning point". In the peroration she writes:
"Basically, the selection of a fence is a social issue. It rests on the question of how much speech communication ability is needed in order to conduct the activities of daily living in a satisfactory manner. The answer will undoubtedly be influenced by such variables as an individual's age, occupation, lifestyle and personal preference. Field rather than laboratory research will probably be needed in order to solve the problem, but research in this area has been inconclusive to date. Until more information is forthcoming, the deciaion on an appropriate fence will necessarily be somowhat arbitrary."

The aame word 'arbitrary' is used by ward (loc, eit.) in his oumming up.
A hint of the way forward was, however, adumbrated by Suter:
"One way to approach the problem of an appropriate fence would be to find the hearing level at which hearingimpaired subjects begin to perform differentiy from their normal-hearing controle."
and it was from this standpoint, albeit in a rather tentative way, that the figure of 19 di $\boldsymbol{H}_{12 \mathrm{~s}}$ emerged from har study. This approach accords with ours but the difficulty is not finally dispelled until 'begin to perform differently' is translated into specific terms. This is what we have attempted in the present atudy.

Throughout this chapter the assumption is made that hearing ability can be more or less faithfully related to hearing threehold levels. There is no reason in principle, however, why a low fence should not be stated in other or gupplementary ways. At the outset of this investigation it was envisaged that a measure related to frequency or temporal resolution might play such a part. If adequately senmitive and relevant tests of these functions were adminiatered this might be faasible but it has to be admitted that this has not proved to be the case in the present study. Although superficially a higher correlation could be found using a combination of impaiment measures (Table 43) than with hearing threshoid level alone, this finding turned out to be a gpurious aide-effect of interdependence between the variablea, confounded by non-linearity of the
relations between them: interpreted literally these results implied that the worse the audiological impairment on the eupplementary measure (CR-1 or rII-2) the better the performance (at constant HIT - but this is not a realistic condition). We contemplated undertaking a principal-componenta analysis to explore the possibility of identifying orthogonal dimensions to explain the data, We decided, however, that this endeavour would be unrewarding so fax as a practical outcome is concerned.

### 7.5 Rolation to notso 2 imits

Although, as mentioned above, this question has often arisen in discuseion of the low fence, the two matters should be clearly separated. Determination of a low fence is a necessary step, but in itself it cannot provide a unique answer to betting occupational noise limits, even if it were granted that the relation betwenn noise exposure and hearing threshold lovel were precisely known. The missing "ingredient" is the parcent of population at risk, that is, liable to exceed the low fence. Determination of this percentage has nothing to do with the percontages used in connection with defining the HDIL: it is purely a political deciaion, and percentage is in effect an independent variable to be inesrted into the squations.

It follows that aubstitution of a conventional low fence by an altornative measure, such as the fDIL advocated here, with a larghr number of decibels attached to it, does not automaticaliy imply any correaponding relaration of noise limits - it aimply changes (downwards) the percentage of axpoged population that would be protected from exceeding the lavel in quastion. clearly, there will be more people above the foot of the curve" (for Whichevar 'activity' one aelects) than above the correaponding inability threenold which is gome way up the curve - but the amount of disability in a given exposed population is in no way changed by redefining tho threshold.

In reality the situation is not quite as simple as just deseribod, nowover, because low fence, as we have aeen, depende on a somemiat arbitzary, but hotiy debated, critorion of diabbility. He euggest the following advantages of introducing the fence defined by HDIL:

1. It provides a concrete definition for etart of diability.
2. The same numerical value appears to be applicable, within reasonably narrow limits, to represent the start of dibability in difforent gituations, background noises, etc.
3. It 10 bimpler to define persons whode hearing deteriorates outoide the limite of normal than persone wo have 'gioght', 'mild', 'minimal' or othor adjoctival degrees of difficulty with 'Eaint', 'convereational', 'everyday' or other adjectival categorion of apeech hearing.

We shall not enter into the question here of what conatitutes a tolerable exceedence rate for hearing conservation purposes, gavo to comment on ons aspect of this. The binl values of $30 / 38$ dB adduced in Chapter 7.4 repregent our beat eatimate of the joint inability thrashold for geveral pituations, and hence tho dibability threshold, reforred to a
young normal baoolino. If wo wore to tako tho further atep of defining an ago related abnormality threahold (Figure 9) progresaively higher HDTL valuos would bo not for oldor populations. In the context of hearing conservation wo have not takon this otop, nor do wo advocate it. In the first placo wo have far from oufficient data to deduce such a relationship (but a glance at the distributions of orror bcorcs in our otologically normal 50 year old group $0 N$ suggosts that age would be a strong factor). There is a moro cogent roason, however. This is the fact that the throohold ahift duc to nolac exposure ri.gen much faotor in the carly years of exposuro than subsequently. Protection by noise limitation must thereforo be primarily targotted on tho young oxposed population to ensure that the HDTL is not surpassed (by more than the politically detormined percentage) during the yeara bofore tho proabyacuaic eroaion of hearing catched up and overtakes in importanco that of further noise exposure.

### 7.6 Rozation to othor eritorta

On the hearing consorvation sido the portinent base document in UK is British Standard 5330. This document makos no political judgemont but roate on two value judgementa plus a body of acientific knowledge about noige exposure ve throohold shift. The value judgomenta are these:

1. The risk of given noiso exposure causing apocificd amounts of throahold ohift is worked out in torm of a population asoumed to be frec from hearing deficita other than those related to age and noide oxposure.
2. Tho low fence above which 'handicap' is deemed to exist is given as $30 \mathrm{~dB} \mathrm{H}_{123}$.

The first of these in under curront conaideration with a viow to pooable ro formulation. This would have an impact on the 'risk' values, but is not directly related to the subject of the prosont report and need not be dincusbed further hore. Tho nocond, howover, meritn appraisal in the light of the present findings: it, too, determines the numerical values of 'riok' tabulated in the document.

It in rolovant to recall tho origin of the value 30 dB . It was arrived at from a otarting point of tho AAOO low fonce of 25 dB Ro.s1z. BUNS at al (1977) presented data from a homogencous population of noise exposed oteciworkers showing that, audiometrically, this was equivalont to $34 \mathrm{~dB} H_{123}$ (a converdion factor which could equally have been taken from tho rouulta of an oarlior otudy, BURNS and ROBINSON, 1970). The chango of frequencies was agreed upon in the light of mounting ovidence (ctrca 1975) of tho groator relevance of 3 kHz an compared with 0.5 kHz in the porception of apech in sonsorinoural hearing lobs. Deliberationa in committoo causod tho figuzo to be roundod down to 30 dB . The arguments for thin adjuntmont aro not documentod but it can bo attributed mont aptly to the 'apirit of the timed and genoral advancement in the fiold of occupational hygionc. (This, in rotrospect, was not a logical stop; the exiatonco or othorwine of a handicap in not rolated $\cdot$ or only vory indiroctly rolatod . . to otandardo of induatrial welfare: an adjustmont on thono grounda bolong to the political arena).

It is little short of remarkable coincidence that the value of 30 dB is the same as the HDIW arrived at in this report, but one could say that BS 5330 would be consistent with the present findings if the words "handicap is deemed to exist" were simply replaced by "capability for speech reception is inferior to the limits of normal hearing".

The corollary of this is that our HDIL lies some 4 dB below the original AAOO low fence, alternatively that the lattex is some 4 dB above the limit of young normal hearing. This relativity appears quite reasonable in the jight of DAVIS's (1971) retrospective verbalization of the AROO criterion:
"The criterion ..... was the ability to understand everyday speech adequately (our emphasis). This does not mean monosyllables in the audiometric discrimination test, nor does it mean nonsense ayllables in the peychoacoustic laboratory, the concept is everyday speech 'as she is spoke', and this implies the value of contextual cues and also the careless way that people speak. There in a great deal of redundancy if we are talking about everyday speech and not about the unexpected message, the unfamiliar proper nathe or the important telephone number."
"Adequate" clearly doen not mean "excellent" or "perfectly normal". In fact, in another place DAVIS (1973) states that the AAOO rule
"was anchored to the average hearing threshold level at which patiente first complatn of their handicap to a doctor rather than to the threahold level at which they first nottce difficulty with faint opeech, in church, and so on".

It is raasonable to $\begin{aligned} & \text { uppose that people notice the difference when they }\end{aligned}$ reach a point beyond any of their normal-hearing peers (effectively our HDIL), but it is a matter for conjecture whether another 4 dB is enough to trigger complaints at the doctor's.

These comparisons should not be read to imply that we take any particular position on the rights or wrongs of such criteria for the furtherance of hearing consezvation. We put forward the HDIL only as a benchutark becaude of its definitional properties, not necessarily as an action level.

On the hoaring aspesament aide, the relevant documents in UK are those ispued by the Department of Hoalth and Social Security on statutory compensation for occupational hearing 20日s, and the publication iasued by the Sritish Association of Otolaryngologists (Anon., 1983) with a view to guidance in legal actions.

The DHSS mcheme is based on the value of $H_{123}$ with a notional low fance of 40 dB (although monetary compensation is not attracted below 50 dB , this point being considered as 20s disablement). The scientific provenance of the 40 dB bageline is obscure and the following are quotations from the White paper Cind 5461 (Department of Health and Social Security, 1973) which preceded the introduction of the scheme:
"Ine [basaline] is the level at which a loss of faculty can be considered to occur, that is the point in the gradual development of deafness at which the loss of hearing results in disablement of at least one per cent." (It is not clear what i\% disablement means,)
"... [the base]ine] represents a somewhat higher level of hearing
loss than the level adopted in some overseas schemes and for other purposes, for example by the AAOO.... , In our [Industrial Injuries Advisory Council's] view a higher level is justified because it reduces the importance of the problem of temporary threshold shift."

We do not find in this much enlightenment on the true nature and level of the onset of disability,

The guidance document of the British Association of Otolaryngologists, apparently under the influence of Suter's findings, bases itself on $\boldsymbol{F}_{124}$ and identifies 20 dB as the starting point of disability, which equates to about $17 \mathrm{df} \boldsymbol{H}_{123}$ for Suter's subjects or to $25.3 \mathrm{~dB} \mathrm{H}_{123}$ for our group NI. If our SAN results are taken as the nearest equivalent to suter'a speech-in-noise data, there is no serious diacrepancy with the 20 dB knee point read off Figure 13. However, such comparisons bring us back into the territory of ill-defined and condition-dependent 'cut-offs'

### 7.7 Oneet of hanateap

Criticism has been lavelled at some investigators' questionnaires, for example the floaring Handicap Scale of HIGH at al (1964), on the grounds that they are heavily woighted towards 'sensitivity' questions, the result being a high correlation between acale score and hearing thzeshold level. The expectation of high correlation, in these circumstances, is a belf-fulfj.lling prophecy, and there is a valid objection that 'handicap' as suth is not tested.

However, gimilme nighly significant correlation with hearing thregnold level seame to be a conmon thread running through other aele-repitt quest:ionnairas, oven in the case of the Hearing Measurement scale doveloped by NCBre (1978). This wan deliberately structured to include soveral aspects of hearing handicap noemingly remote from aimple auditory sensitivity. Noblo found, not unexpectedly, a high correlation on Saction $[$ of hie quostionnaire, but more remarkable is the finding that the correlation was vary littile diluted (significance levels being unchanged) by including all seven Sactions. Even thone interrogating "Enotional responge" and "pergonal opinjon" exhibited aignificant correlations with hearing threshoid level at the higher fraquencios.

Anothar common thread is that the correlation coefficienta (valurs in the literature are typically in the range 0.35 to 0.65 ) are vary similar botwean questionnade score and either hearing threshold level or measures of sparsh hararing perfomance, in some cabes baing largar in the formar case. Minis is not the gituation that one would expect on the conceptull. modal that impaimment generates loss of speech hearing which in turn engenitars the stato of handicap. Neverthelress our own results are also in the same genre as others.

Reference to table 41 shows only modest correlation coefficients between test performance ( $p$ ) and total questionnaire score ( $s$ ) in the range $0.38-0.53$ for the combined YN and NI groups, with similar values (0.35-0.55) for the sub-section of 'disability' questions (d) and substantially less ( $0.25-0.48$ ) for the sub-section of 'handicap' questions ( $n$ ). Against this, the correlation coefficients between questionnaire scores and hearing threshold level are larger in every case but one (boe Table 50). Whatever the explanation of this may be, it permits treating at least a portion of the questionnaire results in the same manner as described in Chapter 7.4 with a view to determining an onset level of handicap in equivalent audiometric terms.

Table 50: Correlation coefficients for combined group YN + NI ( $\mathrm{n}=44$ ) between sel.f-assessments and hearing threshold level (left/ right ear averago) ( $\times 100$ )

$$
\begin{array}{ll}
H_{173} & A_{340}
\end{array} \begin{aligned}
& \text { Best of the } 5 \\
& \text { p-correlations } \\
& \text { (Table 41) }
\end{aligned}
$$

| $d_{22}$ | 62 | 67 | 55 |
| :---: | :---: | :---: | :---: |
| $h_{23}$ | 52 | 59 | 48 |
| $\mathrm{s}_{24}$ | 64 | 65 | 53 |
| Quertionnaire Section II <br> (Hearing in particular situations) |  |  |  |
| $d_{2 S}$ | 62 | 59 | 49 |
| $\mathrm{Hza}^{0}$ | 34 | 34 | 39 |
| $\mathrm{S}_{27}$ | 61 | 58 | 51 |

Since our concern in this chapter is with handicap, the relevant measures from the questionnaires are $n_{2 s}$ and $h_{2 n}$ and, as has already been seen, the latter proved to be insensitive for distinguishing normal from noise-impaired aubjects. The handicap scores from section I of the quentionnaire are plotted against $H_{123}$ in Figure 21, the Erequency comednation yielding the larger correlation coefficient ( 0.62 ), and against $H_{340}$ in Pigure 22. The data treatment and annotation of the diagrame are the same ns for Figures 11-20.

The figures cleariy show the anomalously low self-assessed handicap of the older normal group $O N$, whilat for the other groupa there is apparently a uniform progression starting from the lovel of normal hearing. The intersection of the trend lines (broken) with the 2 nd percentile score of the YN group occurs at the value 9 dB $H_{123}$ (which is iteol.f approximately the 2nd percentile hearing threshold level for this group), and $19 \mathrm{~dB} \mathrm{H}_{340}$ reapectively.


Pigure 2l: Scale scores (as percent of maximun possibie) on questionnaire Section I , 'handicap' questions, against hearing threshold levels $A_{12} 3^{[, R}$ (average of $1,2,3 \mathrm{kHz}$, both ears).

Key: o Group YN, $x$ Group NI (individual values) Group ON (median values)

Line connecting moving medians Straight-line approximation

The arrow at right indicates the 2nd percentile scale score for group YN,


[^3]Whilst it may be imprudent to read too much into the particular numbrical values emerging from the diagrams in view of thair being based on only one set of responses, there in a clear difference from the cases of test performance vs hearing threshold level ghown in Figures 1.1-20 which all equate the limits of normal performance to considerably higher values of nearing threshold level. The faur subjects in group NI with values of $H_{1.23}$ Within normal limits ( $\leqslant 10 \mathrm{~dB}$ ) but rather large handicap scores (33-51\%) were all within normal limits (Bome better than normal) on the measures CR-I, TI-2 and PS-2, so that explanations on the grounda of audiological impaiment appear to be irrelevant, All but one of these four also gave better than average performance scores on the five listening tests, the other (subject 114) gave average or above-average scores (see Tables 23-26).

On the basis of Figure 21 we should conclude that there is no threshold for handicap - any deviation from normal threshold of hearing, no matter how little, evokes a response under self-assessment. This observation is reminiscent of the statement by MERLUZZI and HINCHCLIFFE (1973), made in reference to the effect of age;
"Although a "low fence" of 26 dB HL (ISO) would be applichble to a 70 -yenr-old man, this value would be too high for younger people, For a 60-yedr-old person, a value of 18 dB HL (ISO) would be more appropriate, and for a 45-year-old person it would be leas than 10 AB FL (ISO). Extrapolation of the curve to zero age gives a value of 1.4 dB HL ( ISO ) for the 'low fence'... It can be argued that oven a man with a 3 dB hearing loss is receiving sound at an intensity half of what would normalily be the case so that he is already handicapped." (our emphasis).

## 7.日 Concluding romarks

The data obtained from the investigation can be considered in two different lights, eithar as revealing something about the responses of indiviuuals or as yielding information of potential value in the area of hearing conservation where idiosyncratic responses must necessarily be submerged in pursuit of broader trends,

At the individual level the results. are only useful in proportion to their absolute reliability, aince random errors exart their fuliz effect. In this respect the inveatigation proved to be reasonably successful. In an ideal experimental protocol, replication or replications would permit formal uncartainty auditing, in the given conditions the assertion is eircumstantial. As regards the audiological measurements, the comparison of left and right ant measures (Table 35) is relevant (as well as the 'buried' replication of threshold meagurements at 4 kHz$)$, also the clobe correspondence of the YN and $O N$ groups to established distribution patterns and maynitudes of haring threshold level (Figure 8 ). The left/right similarity teat fails, nowevor, in respect of the Tr and of measures but any want of reliability here may be due in part to the rather abbreviated forms in which they were teated as much as to the performance of the test subjects. Fine ligh correlations between sAQ and hearing threshold level (givan that only two arbitrary combinations of frequency, not necessarily the optimum, were used to charactarize the lattor), and between SAQ and san scoriog, suggest matiafactory reliability at the speech tests (rablea 3日,
39). Similatly, high inter-gection correlations between the parts of the questionnaires (especially Section $I$, Table 40) lend credibility to the consistency of the subjects' attempts at self-assessment.

When, therefore, one turns to the comparison of individuals' responses to the three component elements ( $D, I$ and $H$ ) of the investigation, as in Figures 1i-22, and finds a very wide range of relative responses on these components, there can be no doubt that these are real. These diagramg show widely scattered results on perfommance (on all but the simplest listening test, SAQ), as well as on self-assessment. What is more, within the three simulations, some listeners geemed to be able to 'tune in' to one (or two) and fail at the other two (or one) (compare Tables 24, 25 and 26): also there wore those who could perform well against a self-assessment of hearing difficulty, and vice versa. Two conclugions may be drawn:
(1) An individual assessment of hearing disability is to be viewed as somsthing quite distinct from an assessment of perceived handicap. This can also be phrased the other way round; self-asgesmment is no guide to the actual hearing ability of an individual. There is no reason to doubt the self-assessment results on the grounds of internal inconsiatency and no obvious reason from the point of view of motivation in the neutral conditions of these testa. These results do appear to warrant reservations about the value of self-asaesment. However, these reservations are not about the procedure as such, for which a case can certainly be maintained in applications such as the medical management of individual cases, but only where it is offered as a surrogate for the actual testing of perfonnance. There also apprar to be important legal implications in the want of correspondence between self-teport and test performance, but to pursue this aspect is out of place here.
(2) Where the object is to test individual disability, it is misleading to do this on the basis of speech audiometry alone (whether in quiet or otherwise), Nothing is clearsy from our results than the fact that performance at either or both of these teats is no guide to reception of mespages in more realistic situations. Moreover, performance in one guch eituation is no guide to performance in another. We have found this to be the case even within a vary linited repertory of situations With the common elements of passive listening and speech material. It is hardly likely to be less true in the wider field of communication genarally. Where this leads us as regards practical recommendations it is hard to gay, The implementation of a quasi-realistic situation in controlled conditions, and any attempt at the standardization of auch conditions, presents great difficulties, and a plurality of such gituations is necessiary to further complicate the matter. In this contesxt, the role of axtra-auditory input is also relevant. our attempt to compare purely auditory and audio-visual performance, in binulations 3 and 1 respectively, failed to show much difference on the average (though not individually, some being bettor at one task than tha other and vice versa). Acquired lip-reading ski.ll will almost certainly not have been present in our subjecta due to the malli or modurate hearing losses involved, but some innate ability at 3ip-reading might have been expected to reduce the average error rate at simulation 1 . This faculty may have been insufficientig exerciaed in the conditions of experiment due to pre-occupation with writing down the answers rather than watohing the televiaion gcreen as ingtructed.

Turning to the interpretation of the results on a 'population' basis, rather different considerations are involved. Firstly, there is the question of sampling. our test groups were rather smal. 1 in numbers and of differing sex ratios. Further, it was not practicable to consider demographic or socio-economic variables. In this respect the groups yN and ON were probably more nearly matched than NI, and j.n any case it is not clear how one could find control subjects matched to Nr in all relevant respects except for noise exposure, The data must be understood with these reservations. However, there are some positive aspects. Firstly, the normal group YN appeare to have been large enough to declare it audiologically typical. The same is true of group $O N$, gmall though the numbers are. All three groups expressed closely comparable experience of the situations interrogated in section II of the questionnaire. No aubject in any group failed at any of the tests and no difficulties were encountered in administering them or in deciphering the responses, All subjecte were literate. There are no anomalies of the kind that group NI scored better than YN on any test (although there are large overlape at the individual level). There was, howevar, likely to have been some difference in sel.f-perception betweon groups ON and YN. The former was composed of persons who had no reason, except their age, to suppose that their hearing might be on the way to becoming impaired, NI subjects, on the other hand, were no doubt aware of this possibility in view of thei.r noise history and becauge this was our reason for inviting them to hearing teste, A possible element of self-selection cannot be discounted in the latter case, and if this operated it would more likgly have affected self-assessment than the other teats, in the direction of larger scorns. It would semm unljkely to affoct the deduced relations between parformance and litioring threshold levels. En passant it is worth mentioning that the quality of audiometric performance as judged by excursion width and steadiness of the self-recorded traces was, though variable from person to person, not noticanbly dissimilar between groups.

To sum up, we are reasonably confident of the estimates of hDIt (Table 49), but less sure about the audiometric equivalent of the handicap threshold (Figures 21, 22). The self-aspessment of the oN group compared t.u tiliat of the NI group is merhaps the laast secure of the findings as regards magnitudo, but it accords with the findings of othars qualitatively. The highly varinble and unpredictable performance of individuals, as woll as their gel.f-absesments, is such as to suggest that increasing the numbers would have made little difference to the results: corxelation coefficiente would becone more aignificant but would probably remain numbrically about where they are.

The analysis has focussed on the limit of normal response as the 2 nd parcentile (just ovar 2 standard deviations for a Gausgian distribution). the numerical results are determined by these eriteria, and comparisons with other inventigations are correspondingly sensitive to them. Mare extremas fractilos (apart from being imposmible to determine without violent extrapolation) may be stretching the term 'normal limite' beyond reasonable bounds, On the other hand, a criterion such as the 10th parcentile semens to err too far in the other direction, for an occurrence rate of 1 in 10 can hardly be gaid to be rare enough to neglect. We are therefnce satiafied with the 2 nd percentile as a reasonable limit, and its estimation for the various measures entailed only slight extrapolation of the data.

## REFERENCES

AAO (American Academy of Otolaryngology). See under Committee on Hearing and Equilitrium.

AAOO (American Academy of Ophthalmomlogy and Otolaryngology). See under Comittee on Conservation of Hearing,

ABEL, S.M., ALBERTI, P.W. and RIKO, K. (1980) Speech intelligibility in noise with ear protectors, J. Otol., 9, 256-265,

ACTON, W.I, (1970) Speech intelligibility in a background noise and noise-induced hearing loss. Ergonomtes, 13, 546-554.

AMERICAN MEDICAL ASSOCIATION (1947) Tentative standard procedure for evaluating the percentage loss of hearing in medico-legal cases, J. Am. mod. Ass. 133, 396-397.

ANIANSSON, G. (1974) Methods for assessing high Exequency hearing lobs in everyday listening situations. Acta Otolar., Suppl, 320.

ANON (1983) Mothod of assessment of nearing disablitty, Royal College of Surgeons, London,

ANHERLEY, G,R,C. and NOBLE, W.G, (1971) Clinical picture of occupational hearing loss obtained with the Hearing Measurement Scale. In: Occupational Fearing Loss (ed, ROBINSON, D.W.) Academic Press, London.

BAILEY, p.J. (2983) Hearing for speech: the information transmitted in normal and impaired hearing. In: Hearting Sctence and Hearing Disordors (eds. LUTMAN, M.E. and HAGGARD, M.P.) Academic Press, London.

EAUGHN, W.L. (1966) Noise control: percent of population protected. Int, Audiol., 9, 331-338.

EEATMLE, J.A. (1981) Soctal aspects of acquired hearing loss in adults. Ph.D. Thesis, University of Bradford.

BERKOWITZ, A.O. and HOCHBERG, I. (1971) Self-assessment of hearing handicap in the aged. Arch. Otol., 93, 25-28.

BIRD, E. and TREVAINS S. (1978) The study of the communtcation patterns and problems of hearing-impatred people at work. DHSS Theh. Report 78201.

BIRK-NIELSEN, H. and EWERISEN, H.W, (1.974) Effect of hearing aid treatment. Scand. Audiol, 3, 35-38

ELUMENPELD, V.G., BERGMAN, M. and MILLNER, E. (1969) Speech discrimination in an aging population. J. Speoch Hear, Res., 12, 210-217.

BONDING, P, (1.979) Frequency selectivity and speech discrimination in sensorineural hearing loss, Scand. Audtol. 8, 205-215.

BRITISH STANDARDS INSTITUTION (2976) Method of test for estimating the rlsk of hoaring handicap due to noise exposure. 日s 5330.

BRUNT, M, (1979) prediction of hoaring handicap with the staggered Spondaic Word test. paper given at American Speech and Hearing Association meeting, Atiantis.

BUTNS, W, and ROBINSON, D.W. (1970) Rearing and Notse in Industry. HMSO, London.

BURNS, W., RUBINSON, D.W., SHIPTON, M.S, and SINCLAIR, A, (1977) Heartng hazard from occupational notse; observations on a population from hoavy tridustry, National Physical Laboratory Acoustics Rep. Ac 80.

CHABA, See under Committeo on Hearing, Bioacoustice and Biomechanica,
CHUNG, D.Y. and MACK, B. (1979) The effect of masking by noise on word diserimination scores in listeners with normal hearing and with noise-induced hearing loss. Scand. Audtol., 8, 139-143.

CHUNG, D.Y, and SMITH, $F$, (1900) Quiet and masked brief-tone audiometry in subjects with normal hearing and with noiso induced hearing loss. scand, Audtot., 9, 43-46,

COMMISSION OF THE EUROPFAN COMMUNITIES (1982,84)) Proposal for a Counci.l Directive on the protection of workors from risks related to exposure to chomical, physical and biological agents at work: Noise. Off. J. Eur. Comm.. C2日9/1-5, 5 November 1992, as amended by Off. J. Eur. Comm., c214/1.1, 14 August 1984.

COMMITTEE ON CONSERVATION OF HEARING (1959) Guide for the evaluation of hoaring jmpairmont. Trans, Am. Acad. Ophthal. Otolar., 63, 236-238.

COMMIMIEE ON HEARING, BTOACOUSTICS AND BIOMECHANICS (1975) COMpensatton formula for heartng loss. Report of WG 77, National Academy of Sciencos, Washington D.C.

COMMITVIEE ON KEARING AND EQUILIBRIIM (1979) Gutde for the evaluatton of heartng handtcap. American Academy of Otolaryngology, Rochester, Minn.

DAVIS, A.C. (1983) Hearing disorders in the population: first phaso findings of the MRC National Study of Hearing. In; Rearing Science and Hearing Dtsorders (eds LUTMAN, M.E. and HAGGARD, M.P.) Academic prese, Londion.

DAVIS, H. (1971) A historical introduction. In: Occupational Heartng Loss (cud. ROBINSON, D.W.) Academic preas, London.

DAVIS, H, (2973) Some commentis an "Impairment to hearing from oxposure to noise" by K.D. Kryter. J, acoust. Soc. Am., 53, 1237-1239.

DEPARTMENT OP HEALITH AND SOCIAL SECURI'IY (1973) Occupational Deafness (Roport by Industrial Injurtes Advisory Councti). Cmnd 5451, HMSO, London.

DEPARTMENT OF HEALTH AND SOCIAL SECURITY (1974) National Insurance (Industrial [njurtes) (Prescribed Dtseases) Amendment Regulations. Statutory Instrument 1974 NO, 141.4.

DRESCKLER, W.A. (1980) Reduced speech intelligibility and its psychophysical correlates in hearing impaired aubjects. In: Psychophystcal, phystologtcal and Behavtoural studtes in Foaring (eds van den BRINK, G. and BILSEN, F.A.) 466-471. Delft University press, Netherlands.

DRESCKTER, W.A. and PLOMP, R. (1980) Relation betwcen paychophysical data and speech perception for hearing impaired subjects - I. $J$. acoust. Soc. Am., 6日, 1608-1615.

EWERTSEN, H.W. and BIRK-NIELSEN, H. (1973) Social hearing handicap index. Audtology, 12, 180~187.

FESTEN, J.M. and PLOMP, R. (1983) Relations betwoen auditory functions in impaired hearing. J. acoust. Soc. Am., 73, 652-662.

PINITZO-HIEPER, T., GERLING, I.J., MAIKLN, W.D. and CHEROW-SKALKA, E. (2980) A sound effects recognition test for the pediatric audiological evaluation. Eur and Hearting, 1, 271-276,

FLORENTINE, M., BUUS, S., SCHARF, B. and ZWICKER, K.E, (1980) Frequency selectivity in normally hearing and hearing-impaired observers. J. Speach Hear. Res., 23, 646-669.

FOSTER, J.R. and HACGARD, M.P. (1979) FAAP - an efficient analytical test of epoench perception. Proc. Inst. Acoust., 9-1.2 (November).

FOWLER, E.P. (1942) A simple method of measuring percentage of capacity for hearing speech. Arch. Otolar., 36, 874-890.

GATEHOUSE, R.W. and PAHPEE, C.L. (1.983) Localization of sound by gubjects with varying degrees and types of deafness, Proc. ith Int. Cong. Acoust. (Paris) 167-170.

GENGKL, R.W. (1973) Temporal effects in frequency dibcrimination by hearing impaired listeners. J. acoust. SOC. Am. 54, 22-15,
(IENGEL, R.W. and KUPPERMAN, G.L. (1980) Word diacrimination in noige: effect of diffexent speakers. Ear and Hearing, 1, 256-160.

GtNNorD, R.E. (1979) Occupattonal hearing loss: Workers compensatton undor State and Federal programs. US EPA Rep. 550/9-79-101.

GLORAS, T.G. (2983) The self-assessment approach in audiology: state of the art. Audiology (Grune \& Stratton), $8(J .1)$. 157-171.

GIOLAS, T.G., ONENS, E., LAMB, S.H. and SCHUBF:RT, E.D. (2979) Hearing parformance inventory, J. Spaech flear. Dis., 44, 169-195.

GLORIG, A, and BAUGHN, W. L. (1974) Basis for percent rigk table. proc. tht. Cong. Notse as a publtc Health problem, Dubrountk 1973. US EPA Kep. 550/9-73-008.

GLORIG, A., WHEELER, D., QUIGGIE, R., GRINGS, W. and SUMMERPIELD, A. (1957) Wtsconsin State Fatr hearing survey: statistical treatmont of clintcal and audtometric data. Am. Acad. Ophthal. Otolar., Los Angeles.

HABIB, R.G. and HINCHCLIPFE, R. (1978) Subjective magnitude of auditory impaizment, Aualology, 17, 68-76.

HAUSLER, R, MARR, E.M, and COLBURN, K.S. (1979) Sound localization with impaired hearing, J. acoust. Soc. Am. 65(S1), S133(A).

HARDICK, E.J., MELNICK, W., HAWES, N.A., RILLIAN, J.P., STEPHENS, R,G. and PERTMUTMER, D.J. (1980) Compensation for hearing loss for emplovees under Jurtsdiction of the U.S. Department of Labor: beneftt formula and assessment procedures. Ohio State Univeraity, Contract Rep. J-9~E-9-0205.

HAWKINS, J.E. Jnr and STEVENS, S.S. (1950) Tho masking of pure tones and speech by white noise. J. acoust. Soc. Am., 22, 6-13.

FEALIH AND SAPETY COMMISSION (1981) COnsultative document: protection of hearing at work. HMSO, London.

HYGH, W.S., PALPEANKS, G. and GLORIG, A. (1964) Scale for self-assessment of heaxing handicap. J. Spoech Bear. Dts. 29, 215-230.

HINCHCLIFFK: R. and CORDON, A, (1980) Subjective magnitude of symptoms and handicaps zelated to hearing impaimment. Proc. 3rd Int. Cong. Noise as a Public floalth Problam, Fretburg 1979. ASHA Rep, 10, 144-146.

HOLMRS, A.E., PRANK, T, and STOKRR, R.G, (1981) Telephone listening ability in a noity background. Ear and Bearing, 4, 89-90.

HOOD, J.D. and poorde, J.P. (1971) spoech audiometry in conductive and gensorineural hearing 10sg. Sound, 5, 30-38.

HOOD, J.D. and POOLE, J.P. (1977) Impzoving the zeliability of speech audiometry. Br. J. Audiol., 11, 93-101.

INIERNATIONAL ORCANIZATION POR STANDARDIZATION (1971) Assegsment of occupattonal notso exposuro for hearting conservation purposes. Iso R1999 (ro-istued with minor revibion in 1975 as ISO 1999).

INTERNATIONAL ORCANITATION FOR STANDARDIZATION (1982a) ACOusttcs Dotermination of occupetional notse axposure and estimatton of notse-induced nearing impairment. ISO/DIS 1999.

INTERNALIONAL ORGANIZATLON FOR SLANDARDIZATION (1982b) ACOUSttcs Throshold of hoarting by atr conduction as a function of age and sex for otologicaliy normal porsons. ISO/Drs 7029.

INTERNATIONAL ORGANIMATION POR STANDAROTZATION (1983) Addendum NO, 2 to ISO 389 Acoustics - Standard roforonce zero for the calibration of puro-tone audtometors (1975). ISO 389 AD1.

INTERNATIONAG TELEGRAPH AND TRLEPHONE CONSULTMATIVE COMMITTFEE (CCI'TL) (1981) Tolophone tranemtsston qualtty, Yellow Book, Vol, v.

## ISO. Soe under International Organization for Standardization.

JOHNSON, D.L. (2978) Derivation of prosbycusts and notse-tnduced permanent threshold shift (NIPTS) to be used for the basts of a standard on the effects of notse on hearting. ANRU Rep. TR-78-128.

KAPLAN, H., HEELEY, J. AND BROWN, J. (1979) A modified Deaver scale: test-zetest reliability. J. Acad. Rehabll. Audtol. 11, 15-32.

KRIL, R.L., PEARSON, J.C.G., ACTON, W.I. and TAYLOR, W. (1971) Social effects of hearing loss due to weaving noise. In: occupational Rearting Loss (ed, ROBINSON, D.W.) Academic Prest, London.

KONO, S., SONE, T. and NIMURA, T. (1979) A study of personal noise exposure in three cities different in population. proc. Inter Notse 79, 843-848.

KRYTER, K.D. (1973) Impairment to hearing from exposure to noise. J acoust. Soc. Am., 53, 1211-1234.

LAMB, S.H., OWENS, E. and SCHUBERT, E.D. (1983) The reviged form of the Hearing performance Inventory. Ear and Heartng, 4, 152-156.

LINDEMAN, H.E. (1971) Relation between audiological findings and complaints by persons suffering from noise-induced hearing loss. J. Am. indust. Hys. Ass., 32, 447-452.

LOEB, M., CAMERON, P.D., LUZ, G.A., LUZ, S, and VANDERHFI, S.L, (1974) Hearing levels in U.S, Army basic training: relationship to questionnaire responses, J. aud. Ros. 14, 247-257.

LYREGAARD, P.E. (1982) Frequency selectivity and speech intelligibility in noine. Scand. Audtol., Supp. 15, 113-122.

LYPEGAARD, P.E., ROBINSON, D.W, and HLNCHCLIPPE, R. (1976) A feasiblitty study of diagnosttc spoech audiometry. National phyaical Laboratory Acoustics Rep. Ac 73.

MRCRAE, J.H. (1975-76) A procedure for classifying degree of hearing loss. J. otolar. SOC. Aust. 4, 26-35.

MARKIDES, A. (1982) Reactions to binaural hearing aid fitting. scand. Audtol., Suppl. 15, 197-205.

MCCARTNEY, J.H., MAURER, J.F. and SORENSON, F.D. (1976) A comparison of the Hoaring Handicap Scale and the Hearing Measurement Scale with standard audiometric measures on a geriatric population. $J$, aud. Res., 16, 51-5B.

MEDICAL RESEARCH COUNCIC (1947) Bearing aids and audiometers. Special Report Series No. 26L. HMSO, London.

MERLUZZI, F. and HINCHCLIPEE, R. (1973) Threghold and subjectivo auditory handicap. Audiology, 12, 65-69.

NABELSK, A,K, and ROBINETVE, L. (1978) Reverberation as a parameter in clinical testing, Audiology, 17, 239-259.

NIOSH (National Institute for Occupational Safety and Health) (1972) Criteria for a recommended standard on occupattonal exposure to noise. US HEW Rep. HSM 7311001.

NOBLE, W.G, (1970) A new concept of damage risk criterion, Ann. occup, Fยด., 13, 69-75.

NOBEE, W.G. (1973) pure-tone acuity, speech hearing ability and deafness in acoustic trauma - a review of the literature. Audiology, 12, 291-315.

NOBLE, W.G. (197日) Assessment of Impatred Rearing, Academic Press, New York.

NOBLE, W.G. (1979) The Hearing Measurement Scale as a paper-pencil form: preliminary regults. J. Am. aud. Soc., 5, 95-106.

NOBLE, W,G. and ATHERLEY, G.R.C. (1970) The Hearing Measurement Scale: a questionnaire for the measurement of auditory disability. J. aud. Res., 10, 229-250.

OWENS, E. and PUJIKAWA, S. (1980) The Hearing Performance Inventory and hearing aid use in profound hearing loss. J. Speech Hear. Res., 23, 470-479.

PASSCHIER-VERMEER, W. (196B) Hearing loss due to exposure to steady-state broad-band notse. IG-TNO Rep. 35, Delft, Netherlands.

PATMERSON, R,D, (1976) Auditory filter shapes derived with noibe stimuli. J. acoust. Soc. An., 59, 640-654,

PATMERSON, R,D, and NLMM-SMITH, I. (1980) off-frequency listening and auditory filter asymmetry. J. acoust. Soc, Am., 67, 229-245.

PAITIERSON, R.D., NIMMD-SMITH, I., WEEER, D.L, and MILROY, R. (1982) The deterioration of hearing with age, frequency selectivity, the critical matio, the qudiogram and speech threshold. J. acoust. Soc. Am., 72, 1780-1803.

PEARGON, J,C.G., KELL, R.L, and TAYLOR, W. (1973) An index of hearing impaiment derived from the pure-tone audiogram, In: Disorders of Audttory Function (ed. TAYLOR, W.) Academic presis, London.

PEIERS, G.M. and HARDICK, E. (1974) The relationship between mome measures of hearing $208 s$ and self-assessment of hearing handicap. paper given at American Speech and Hearing Agsociation meeting, Las Vegas.

PICK, G.P. (1980) Comment on DRESCFIER, W.A. (1980), Ins Psychophysical. Phystological and Behavioural Studies in fiearing (eds. van den BRINK, G. and BILSEN, P.A.) 470, Delft University press, Netherlands.

PLOMP, R. (1977) Acousticsl aspects of cocktail parties, Acusttca, 30, 186-191.

PLOMP, R. and MIMPEN, A.M. (1979) Improving the reliability of taking the apeech reception threahold for sentences, Audiology, 18, 43-52,

RICHARDS, D. $\mathrm{T}_{1}$. (1973) Telecommunication by Speach, Butterworth, London.

RITSMA, R.J., WIT, H.P. and van der LANS, W.P. (1980) Relations between hearing loss, maximal word discrimination score and width of psychophysical tuning curves. In: Psychophysical, phystological and Benavtoural Studtes in Bearing (eds. van den BRINK, G. and BILSEN, F.A.) 472-476, Delft University Press, Netherlands.

ROBINSON, D.W, and SHIPTON, M.S. (1977) Tables for the estimation of notse-induced hearing loss. National Physical Laboratory Acoustice Rep. Ac 61 (2nd edition).

ROBINSON, D.W., SHIPION, M.S. and HINCHCLIFFE, R. (1981) Audiometric zero for air conduction: a verification and critique of international standards. Audiology 20, 409-431.

ROBINSON, D.W, and SUITON, G.J, (J.978) A comparattve analysts of data on the relation of pure-tone audtometric thresholds to age. National Physical Laboratory Acoustics Rep. Ac 84.

ROBINSON, D.W. and SUTHON, G.J. (1979) Age effect in hearing - a comparative analysis of published threshold data, AudLology, 18, 320-334.

SCHARP, B. (1978) Compazigon of nomal and impaired hearing ri: frequency analysis, speech perception. Scand. Audiol., Supp. 6, 81-106,

SCHEIN, J.D., GENTILE, A. and HAASE, K.W, (1970) Development and evaluation of an expanded leaxing loss scale quegtionnaire. Vttai and fealth Statlstics, 2, 1-42.

SCHOW, R.L. and TANNAHITLL, J.C. (1977) Hearing handicap scores and categories for subjects with normal and impaired hearing sensitivity. J. Am. aud. Soc., 3, 134-139.

SHIPTON, M.S. (1979) Tables relating pure-tone audiometric threshold to age. National phyaical taboratory Acoustics Rep, Ac 94.

SILVERMAN, S,R., THURLOW, W.R., WALSH, T.E, and DAVIS, H. (2948) Improvement in the social adequacy of hearing following the fenestration operation. Laryngoscope, 58, 607•632.

SMCORENBURG, G.P., de LAAT, J.A.P.M. and PLOMP, R. (1981) The effects of notse-tnduced nearing loss on the intelligibtlity of speech in notse. AGARD CP-311, paper 1.1.

SMOORENBURG, G.F., de LAAT, J.A.P.M. and PLOMP, R, (1982) The effectB of noise-induced hearing loss on tho intolligibility of speech. Scand. Auatoz., Supp. 16, 123-133.

SPEAKS, C., JERGER, J. and TRAMMELL, J. (1970) Meaburement of hearing nandicap. J. Speech Hear. Res., 13, 76日-776.

SUTFR, A.H. (1978) The ablltty of mildiv hoarting tmpatred indtutduals to discrimtnate speoch tn notse. US EPA Rep, 550/9․78-100.

TANNAHLIL, J.C. (1979) The Hearing Handicap Scale as a meanure of hearing aid benefit. $J$, Speech Hear, Dis, 44, 90-99,
'TAYTOR, W., PEARSON, J.C.G., KELL, R.L, and MAIR, A. (1967) A pilot study of hearing loss and social handicap in female jute weavers, Proc. Roy. soc. Med., 60, 1117-1121.

THOMAS, A., LAMONT, M, and HARRIS, M. (1982) problems encountered at work by people with severe acquired hearing loss. Br. J. Audiol., 16, 39-43,

TYYER, R.S., FERNANDES, M.A. and WOOD, E.J. (1990) Masking, temporal integration and epeech intelligibility in individuals with noise-induced hearing lons. In: Disorders of Auditory function III (eds. TAYLOR, I.G. and MARKIDES, A.) Academic prese, London.

TYLER, R.S., FERNANDES, M,A, and WOOD, E.J. (1982a) Masking of pure tonog by broad-band noise in cochlear-impaixed listeners. J. Speech Bear. Res., 25, 117-124.

TYLER, R.S., SUMMERPIETD, Q., WOOD, E.J. AND FERNANDES, M.A. (1982b) Psychoacoustic and phonetic temporal processing in normal and nearing impaired listeners. J. acoust. Soc. Am., 72, 740-752,

TYLER, R.S., WOOD, E.J. and PERNANDES, M.A. (1982c) Prequency resolution and hearing loss. Br. J. Audtol., 16, 45-63.

WRNG, M. (1981) Self-assessment inventories in audiological evaluation. Papur given at Amsrican Speech and Hearing Association meeting, Los Angeles.

WARD, H.D. (2983) Tho Amorican Modical Association/American Academy of otolatyngology formula for determination of hearing handicap. Audtology, 22, 313-324.

WITKINS, P.A. and ROBINSON, D.W. (1983) The onset of handicap due to noise-induced hearing loss. proc. lith int, Cong. Acoust. (Paris), 265. 268.

HORLD HEALIH ORGANIZATION (1980) International classtftcatton of tmpatrments, Disabtitttes and Handicaps, wHo, ceneva.

ZWICKER, K,E, and SCHORN, K, (1982) Temporal resolution in hard-of-hearing patientis. Audiologv, 21, 474-492.

## APPENDIX A

TEST MATERIAL FOR SIMULATION OF A SOCIAL GATHERING

## A. 1 Text of tntroduction to the video tape

"IThe idea of thin test is to see how well you can hear and write down somebody's name, address and telephone number under difficult listening conditions.

Each of the numbered entries will be presented as four separate items: the person's name, theix aduress, the town and their telephone number, After each item has been spoken there will be a pause to allow you to write down on the form provided what you think was said. If you are ungure of the spelling of any of the names, spell the word the way it sounded to you. Always make some attempt to write down what you think was said, even if you are not confident or could not understand the whole word.

The numbers [superimposed] on the screen correspond to the item numbers on the form, so you can always find where to write your answer.

Each time an iten is being spoken make aure that you look at the speaker's face, as this will help you to understand what is being gaid. 'to let you know when to look up at the TV screen, as shown on the form each of the items is preceded by an appropriate introductory phrase:

The next name is/and the address/The town is/and the 'phone number. So each entry will look and sound something like this:

| The name is | J. Citizen |
| :--- | :--- |
| and the address | 26 Chapel Road |
| The town is | Eastland |
| and the phone numbar | 903871.1 |

In fact it will be more difficult for you to hear what is being said becaune we are going to introduce various noises into the room. to give you some practice under these conditions in a moment $I$ will read two examples during wich you should write down watever you think was gaid. But first, do you have any questions? If so, please ask them now.
[Demonstration of 2 examples in noise.]
You probably didn't catch everything that was said. Don't worry about that - it is the purpose of the test to make it fairly hard for you. Here are two examples again, this time with sub-titles to indicate the correct words.
[Demonstration of the same 2 examples with sub-titles superimposed on picture.]

That is the end of the practice session. If you have any questions, please abk them now.

The tent will start in a few seconds and you will see different epeakers on the screen. please get ready to start writing and remember to watch the screen each time the person is apeaking. OK then, here goes."

```
A.2 Speoch matortal
Practice items;
\begin{tabular}{lllll} 
A & C. Hilton & 15 & 日riarmere Wajk & Chadderton \\
B & A. Radford & 35 Princess Road & Oldbury & 429897 \\
\hline
\end{tabular}
```

Test items:
spoaker JB

| 1 | 5. Moss | 5 | Humphrey Park | Urmaton | 865 | 5946 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | G. Day | 53 | Sansome Road | Shirley | 744 | 8434 |
| 3 | D. Rhoder | 36 | Leam Crescent | Solinul. | 743 | 0323 |
| 4 | S. Godley | 24 | Ennerdale avenue | Stanmore | 907 | 9929 |
| 5 | K. Bass | 40 | Haddon Grova | Siacup | 300 | 9920 |

Spoaker MS

| 6 | A. Richards | 91 | Ashtrce Road | Tividale | 5526887 |  |
| ---: | :--- | ---: | :--- | :--- | :--- | :--- |
| 7 | R. Tompkins | 106 | Overbury Avenue | Beckenham | 658 | 1445 |
| B | F. Barton | 28 | The Drive | Esher | 398 | 1760 |
| 日 | E. Waple | 158 Wanstead Lane | Cranbrook | 544 | 5869 |  |
| 10 | J. Garrish | 16 Hammer Road | Westvale | 546 | 9787 |  |

Speaker KH

| 11 | A. Stevens | 70 Hall Lane | Ockerhill | 5563069 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 12 | P. Murnane | 69 Beacon Road | Sutton Coldfield | 3546890 |  |
| 13 | T. Husgey | 59 High park Sail | Erskine | 812 | 6050 |
| 14 | R. Tough | 123 Pirgt Avenue | East Molesey | 941 | 1567 |
| 15 | B. Cocking | 48 Drchard Avenue | Bedfont | 751 | 1048 |

Spoaker DR

| 16 | W. Wynn | 30 Poulson Drive | Bootle | 928 | 5134 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 17 | A. Bickford | 25 Hay Lane | Monkspath | 745 | 5863 |
| 18 | E. Willett | 9 Redwood Estate | Cranford | 897 | 1463 |
| 19 | L. Nathan | 39 Borehan Holt | Elstreo | 953 | 4232 |
| 20 | R. Butterworth | 12 Belmont Avenue | Springhead | 652 | 1837 |

## Pronunciation of telephone numbers:

| 5563059 | five five-six | three-oh six-nine |
| :--- | :--- | :--- |
| 5445869 | five double-four | five-eight six-nine |
| 300 | 9920 | three double-oh |
| double-nine two-oh |  |  |
| 658 1445 | six five-eight | one-four four-five |
| etc. |  |  |

## A. 3 'Response form

The form as presented to subjects is reproduced on the next page.

## UNIVERSITY OF SOUTHAMPTON - INVESTIGATION OF HEARING HANDICAP

LISTENING IN SOCIAL SITUATIONS


That is the end of this test, thank you.

TEST MATERIAL FOR SIMULATION OF PUBLIC ADDRESS ANNOUNCEMENTS IN A CONCOURSE

## B. 1 Text of introduction to the audto tapo

"In a moment you will hear a typical announcement recorded at waterloo railway station. Liaten to it carefully and try to get used to understanding the important information.

## [Demonstration]

Next we will play you a series of announcements. For each one there is a particular question [on the response sheet]. I will read the relevant question to you beforo each announcement so that you know what to ilaten for in particular. If you have any questions, please ask them now."

## B. 2 Transeript of announcomonts

Item 1: "The 17.52 to Guildford via Cobham will leave from platform 10, calling at Surbiton, finchley Wood, claygate, Oxshott, Cobham and Stoke d'Abernon, Effingham Junction, Horsley, Clandon, London Road and Guildford. The 17.52 to Guildford via Cobham is now standing at platform 10."

Item 2: "The 17.50 to portamouth Harbour will leave from platform 1. calling at woking, Worplesdon, Guildford, Godalming, Haslemere, Petersfield, Rowlands Castle, Havant, Fratton, portsmouth and Southsea, and portsmouth Harbour. The 17.50 to portamouth Harbour is now standing at platform 11."

Item 3: "The 1B. 02 to Dorking will leave Erom platform 1, calling at Clapham Junction, Wimbledon, Worcester park, Stoneleigh, Ewell West, Epsom, Ashtead, Leatherhead, Boxhill and Wegt Humble, and Dorking. The 18.02 to Dorking is now standing at platform 1."

Itein 4: "We apologize to passengers travelling by the 18.10 to Salisbury and Bournemouth, The stock on the Bournemouth service is formed of 8 coaches only. This is due to the lack of suitable rolling stock."

Item 5: "The 17.54 to Eastleigh will leave from platform 日, calling at Woking, Farnborough, Fleet, Winchfield, Hook, Basingstoke, Micheldever, Winchester, Shawford, and Eastleigh."

| Item 6: | "The 16.35 Intercity service to Bournemouth and Weymouth will leave from platform 13, calling at Southampton and Bournemouth. The front 8 coaches furthegt from the ticket barrier are for Granksome, Parkstone, Poole, Hamworthy, Holton Heath, Wareham, Dorchester South, and Weymouth. Change at Southampton for all stations to Pokesdown. Change at Wareham for bus connections to swanage. The 16.35 Intercity service to Bournemouth and Weymouth is now standing at Platform 13." |
| :---: | :---: |
| Item 7: | "The 16.12 to Basingstoke and Alton is a platform alteration and will now leave from platform il. We apologize to passengers traveling by this service for the inconvenience caused". |
| Item 0: | "This is a special announcement for Jackie Cortez. Miss Jackie Cortez please call at the police Station wich is situated alongside platform 15, This is a special announcement for Miss Jackie Cortez." |
| Item 9: | "Tine 18.00 hrs to portamouth Harbour will leave from platform 13, calling at West Byfleet, Woking, Worpleadon, Guildford, Farncombe, Godalming, Milford, Witley, Haslemore, Liphook, Lise, Petersfield, Rowlands Castle, Havant, Bedhampton, Fratton, Portemouth and Southaea, and Portamouth Harbour. The 18.00 hrs to portsmouth Harbour is now gtanding at platform 13." |
| Item 10: | "The 17.58 to Alton will leave from platform 6, calling at Moking, Brookwood, ABh Valo, Aldershot, Parnham, Bentley, and Alton. Passengers travelling to Ash Vale are requested to join the first 5 coaches further from the ticket barrier. The 17.58 to Alton is now standing at platform $6 . "$ |

## B. 3 Quortion shoot

The question sheot and model answers axe reproduced on the next page.

## UNEXPECTED AMOUNCH:HNTS IN A PUBLIC CONCOURSE

Name: $\qquad$ Date: $\qquad$

In a moment you will hear a typical announcement recorded at Waterloo railway station. Listen to it carefully and try to get used to understanding the important information.

Next we will play you a series of announcements. For each one there is a particular question below. I will read the relevant question to you before each announcement so that you know what to listen for in particular. If you have any questions, please ask them now.

Item 1 From which platform will
this train depart? .............

Item 2 Where should you change trains for Wanborough and Ash? ......

## Gulefore <br> No

Item 3 Does this train stop at Bookham?

Item 4 Why do British Rail apologize to passengers on this train? .. And why has the problem occurred?


Item 5 Does this train stop at Winchfield? ................. $\qquad$
Item 6 For which destinations should you change at Southampton? ...

Item 7 What is the alteration to this service? Deponing firm joinifor. it

Item 8 What $i_{s}$ the special announcement for Miss Jackie Cortes? (Please give all the relevant information)
ifew+e to tethetolice Stratum

Item 9 What is the departure time and destination of this train? ... $\qquad$

Item 10 What are the special instructions for passengers to Ash Vale? ... (Please give all the


That is the end of this test, thank you.

## APPENDIX C

TEST MAIERIAL FOR TELEPHONE LISTENING IN NOISE

## C. 1 Taxt of introduction to the audto tape

"In this test you will listen to people's names, addresses and telephone numbers in the same format as you heard in the earlier test. To give you some practice under these conditions in a moment I will read two examples during which you should write down watever you think was said.
[Demonatrations of 2 examples in noise.I
You probably didn't catch everything that was said. Don't worry about that - it is the purpose of the test to make it fairly hard for you.

Remember, if you are unsure of the spelling of any of the names, spall the word the way it sounded to you. Always make some attempt to write down what you think was said, even if you are not confident or could not underatand the whole word.

That is the end of the practice session. If you have any questions, please ask them now.

The test will start in a few seconds, so please get ready to atart writing, OK then, here goes."


## 

NAME: $\qquad$ Date: $\qquad$

|  | The Name is | AND THE ADDRESS | True town is |  |
| :---: | :---: | :---: | :---: | :---: |
| Example: | T. Cimzer |  | Efstand | 9038711 |
| fractice <br> A | (PIEASE WRITE Your answers in moock capitals) |  |  |  |
| в |  |  |  |  |
| test 1 |  |  |  |  |
| 2 |  |  |  |  |
| 3 |  |  |  |  |
| $\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$ |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| $8 .-$ |  |  |  |  |
| 9--- |  |  |  |  |
| 10 |  |  |  |  |
|  |  |  |  |  |
| $\begin{aligned} & 11-\ldots-- \\ & 12-\ldots- \end{aligned}$ |  |  |  |  |
| 13---- |  |  |  |  |
| 14 |  |  |  |  |
| 15 |  |  |  |  |
|  |  |  |  |  |
| $\begin{aligned} & 16 \ldots-\ldots \\ & 17 \ldots \end{aligned}$ |  |  |  |  |
| 18--. |  |  |  |  |
| 19-- |  |  |  |  |
| 20 |  |  |  |  |

That is the end of this test, thank you.

## APPENDIX D

WORD LISTS FOR THE SPEELH AUDIOMETRY

|  | List 1 | Liget 3 | Ligt 5 | List 7 |
| :---: | :---: | :---: | :---: | :---: |
|  | SAQ 45 | SAQ 70 | SAQ 45 | SAQ 70 |
|  | Ship | Thud | Fib | Badge |
|  | Rug | Witch | Thatch | Hutch |
|  | F'an | Wrap | Sum | Kill |
|  | Check | Jail | Heel | Thighs |
|  | Haze | кeys | Wide | Wave |
|  | Dice | Vice | Rake | Reap |
|  | Both | Gct | Goes | Foam |
|  | well | Shown | Shop | Goose |
|  | Jot | Hoof | Vet | Not |
|  | Move | Bomb | June | Shed |
|  | Iigt 2 | Iifot 4 | Lipt 6 | List 8 |
|  | SA2 30 | SAN | SAQ 30 | SAN |
|  | Figh | Pun | Pill | Bath |
|  | Duck | will 1 | Catch | Hum |
|  | Gap | vat | Thumb | Dip |
|  | Choeso | Shape | Heap | Pive |
|  | Rajil | Wreath | Wiso | Ways |
|  | Hivo | Hido | Ravo | Reach |
|  | Bone | Guess | coat | Joke |
|  | Wedge | Conb | Shone | Noode |
|  | Mons | Choose | Bed | cot |
|  | Tooth | Job | Juico | Shel. 1 |
| Key: SAQ 30/45/70: speech level 30/45/70 dB(A), |  |  |  |  |
|  |  | $\begin{aligned} & n \text { level } \\ & \mathrm{dB}(A) \end{aligned}$ | $\text { in } 24$ | ble also |

## E. 1 Notes on the questfonnatres

Each Section was in pencil-and-paper form, unpaced. Sections I and II were given consecutively, verbal instructions for each being repeated in printed form on the firgt sheet of these Sections.

Each of the nine question sheets of Section II was accompanied by a relevant photograph (not reproduced here), arranged in a loose-leaf folder, with question Bheot and photograph on facing pages.

Section III consisted of three separate question sheets, presented to subjects one at a time after the completion of the corresponding simulation test (Appendices $A, B, C)$, with verbal instructions in cage the task was not self-explanatory.

## E. 2 Section 1 - Rearing in General

please work through the questions below at your own apeed and put ticks in the answer boxes that fit best. Even if your hearing is excellent (and you may anawer that way to question 1) remember that there are some occasions when almost anyone finds it a bit difficult to hear, so please try to answer every question. If some of them do not apply at all to you, or if you are quite unable to make a choice, then you may tick the "Not applicable" box.

1. Generally speaking, how would
you describe your hearing? .......................... Excellent
Good but not perfect
Moderately good
Not very good
Bad
2. Is your state of hearing much
the same as it always was or
is it getting worse? ................................. The same
Slightly less good Noticeably worse

Much worse
3. Do you have to make a special
effort to hear things?
NeverSometimes

Often
Always
4. Do you think other people notice that you have any problems with your hearing?
........... No Possibly

Yes $\square$
If this question is not anplicable, please tick here ....
5. Is your enjeyment of life affected by the state of your hearing? .................... Not at all

            If this question is not
    applicable, nlease tick here .... $\square$
slightly
Quite a lot
severely
6. Do you feel that your hearing puts you
at a disadvantage compared to others? .......... Not at all $\square$
slightly $\square$
Quite a lot $\square$
Severely $\square$
If this question is not
applicable, please tick here .... $\square$
7. When you hear an unexpected sound, do you
instantly know the direction it comes from? ..... Always
Usually
Orten not
Never
The next two questions are about particular sounds and how well you hear them
8. When watching your favourite TV
programme or listening to the radio, do you like the volume hicher than
other members of the household?
No
Yes
If you answered 'Yes' here, what is the reason? ................. I need it louder to hear everything
Just a matter of taste $\square$
Any other reason? $\qquad$
$\qquad$
$\qquad$

the :ounds of dajly life? .............. ferfectly well
Such thinge as:
the doorbell your pets birds singing water ruming kettle boiling phone bell in other room

If these or any other things affect you particularly, please write here what they are $\qquad$
$\qquad$

The next few questions are about how well you hear speech
10. Do you have any difficulty in quiet surroundings with hearing what people are saying? ...................................... Never Sometimes $\square$ Often $\square$ Always
11. In conversation with people that you don't hear very well, do you ask them to repeat what they said? ...................... Never $\square$ Sometimes $\square$ Often $\square$ Always $\square$

If this question is not applicable, please tick here .... $\square$
12. Broadly speaking, when you have any difficulty listening to what people are saying, is it because:. ............... they don't speak loudly enough?
even when loud enough you can't $\square$ make out the words?
other reason
(please specify)
...................

If this question is not
applicable, please tick here ....

The next wo questions concern your wort:
13. Does the state of your hearing


If this question is not applicable, please tick here ....
14. Do you work in an area where hearing protectors are made available or used?


Yes


Does wearing a hearing protector cause you any additional problens with hearing sounds?

|  | No $\square$ |
| ---: | ---: |
|  | Yes $\square$ |
| Don't know $\square$ |  |

15. If you get noises in the head or ringing in the ears arter work, does this cause difficulties in your daily life? ............... Not at all

A little
Quite a lot $\square$
Severely
If this question is not applicable, please tick here ....

## E. 3 Section II - Heartng tn Particular situations

We are going to describe some typical situations where you may have had some problem in hearing well. Each one is introduced separately and is described in a few words at the top of each page. There is also a picture for each situation to help you visualize the scene we are describing.
please answer the questions by putting ticks in the boxes that best fit your experience. Even if you answer that the situation never happens to you (which is the first question on each page) we would prefer that you answer all the other questions rather than leave them blank, You can probably do this by using your imagination to put yourself in the kind of situation described.

You can go at your own speed and please remember when you start each page to examine the photograph which depicts the situation, read the description at the top of the question gage carefully, and then carry on with the answers.
please turn over now and begin with Situation A.

$$
\begin{array}{ll}
\text { Situation A } & \begin{array}{l}
\text { You are listenime to the aports results or } \\
\text { similar factual information on the ratio, } \\
\\
\\
\\
\\
\text { liking the volume control adjusted to your }
\end{array}
\end{array}
$$

## Questions

1. This happens to me ...... never sometimes often
2. I hear all the

3. I have difficulty with
male voices...... $\square$
female voices.... $\square$
foreign accents.. $\square$
dialect voices... $\square$
voices relayed
by tel.ephone....
other (please
specify)......................................

If none of these apply, please tick here ...
4. If there are distractions, my usuel reaction is to .......... turn up the volume............
stop listening...
other (please
specify)..................................... . .

If none of these apply, please tick here ...
5. It may be difficult
to heer in this situation but this does not nevessarily mean that it matters to you. Eut cen you say how much it matters? .... Not at all A little Quite Verymuch a lot

> Situation E You are at a noisy cathering in a pub or you and loud music is playing in the background. The person opposite you is trying to tell you some factual information - it might be the oricket score, how to get to a certain place, what they heard on the news, or something like that. You are trying to hear what they are saying.

## Questions

1. 'This happens to me ....... never sometimes often
2. I can clearly hear
the person opposite me ... always usually sometimes never
the person opposite me $\cdots$ always usually sometimes never
3. What makes it
particularly difficult
the music
other conversations..........
the general noise............ $\square$
having to concentrate hard.. $\square$
other (please
specify).......................................

If none of these apply, please tick here ...
4. When this situation is
difficult, my usual
reaction is to .................... ask the person to
speak louder...................
avoid such gatherings....... $\square$
pretend I heard...............
other (please
specify)

If none of these apply, please tick here ...
5. It may be difricult to hear in this situation but this does not necessarily mean that it matters to you. But can you say how much it matters? .... Not at all A little Quite very much a lot

$$
\begin{array}{ll}
\text { Situstion C } & \text { You are in the concourse of a lusy } \\
\text { railway station or uirport, full of } \\
\text { people milling around you. fudderily } \\
\text { an nnnourcement is called over the } \\
& \text { public addess system with information } \\
& \text { which mjght or might not be important } \\
& \text { for you }
\end{array}
$$

## Questions

1. This happens to me ....... never sometimes often
2. I hear the announcements
clearly .................. always usually sometimes never

3. What makes it particularly difficult?

announcements not loud enough.
distorted sound quality..... $\square$
the background noise........
the distractions............. $\square$
catching the important words.
other (please specify)

If none of these apply, please tick here ... $\square$
4. If I miss the anmouncement, my reaction is to............ read the indicator board.... ask someone else............. $\square$ get anxious..................... other (please specify)..................................... If none of these apply, please tick here ... $\square$

| Situation D | You are concentrating on a quiet |
| :--- | :--- |
|  | task at home - reading the paper, |
|  | doing a erossword, writing a letter |
| or something similar. The radio |  |
|  | and TV are not on, Other members |
| of the family are also in the room |  |
| and everyone is quiet until, suddenly, |  |
|  | one of them makes a casual remark |

## Questions

1. This happens to me ....... never sometimes often
2. I miss such remarks ...... never sometimes often always
3. When I don't catch the remark properly, my usual reaction is to $\ldots . . .$. .. guess what was said...........
ask for it to be repeated... $\square$
ignore it..................... $\square$
other (please


If none of these apply, please tick here ... $\square$
4. It may be difficult to hear in this situation but this does not necessarily mean that it matters to you. But can you say how much it matters? .... Not at all A little Quite Very much a lot

## Questions

1. This happens to me ....... never sometimes oflen
2. I would hear well
wherever I sat $\ldots \ldots . . .$. always usually sometimes never
3. I have difficulty if .............. several people speak
at once.........................
the speaker does not
raise his voice
I can't see who
is speaking.................... $\square$
the hall is large \& bare... $\square$
other (please
specify).......................................

If none of these apply, please tick here ... $\square$
4. If I find this kind of situation difficult, my usual reaction is to ............. sit near the front............
ask the person next to me for help..................... avoid such meetings......... $\square$ other (please specify)......................................

If none of these apply, please tick here ...


## Questions


2. I hear everything that is said .............. always usually sometimes never
3. I have difficulty with .......... noise outside................... $\square$
speakers who mamble.......... $\square$
papers rustling..............
people whispering
among themselves..............

speakers who have
their backs to me............
other (please
specify)
If none of these apply, please tick here...
4. If I find difficulty with this kind of situation, my usual reaction is to ............ sit near the chairman.......
ask people to speak up......
find it tiring................
avoid such meetings......... $\square$
other (please
specify)

If none of these apply, please tick here ...

| Situation $G$ | You are making a telephore call <br> from a payphone in a noisy place <br> such as a pub, a busy street or <br> a railway station |
| :--- | :--- |

## Questions

1. This happens to me ....... never sometimes often
2. I hear most of what is said .................... always usually sometimes never
3. When I do not hear well, what are the main difficulties? ...... noise behind me................
an unfamiliar voice at the other end.............. $\square$
a bad line...................... $\square$
the other person speaking too fast...........
the other person speaking indistinctly....... $\square$ other (please specify). $\qquad$ If none of these apply, please tick here ... $\square$
4. If I have difficulty in this situation, my usual reaction is to .................... ask the other person to speak up or speak more slowly.....................
ask for a repent of words not heard.
shield my other ear.........
try another line.
abandon the call
al.together......................
other (please
specify).......................................

If none of these apply, please tick here ... $\square$


```
Situation J You are in one of the front seats of a
                    car. It is night time, there is a lot
                    of traffic about, and you are travelling
                    in an unfamiliar area.
```


## Questions

```
1. This happens to me ....... never sometimes often
```

2. In this situation, I am usually ............. the driver
a passenger
3. I can clearly hear what another person alongside me in the front of the car says........ always usually sometimes never $\square \quad \square \quad \square$
4. I have more difficulty hearing remarks made by other occupants of the car if ............................ the radio is on...............
any of the car windows is open.............
the person speaking is in the rear seat.........
other (please specify)......................................

If none of these apply, please tick here ...
5. (Answer only if you are usually the driver)

Are you ever aware of danger or of being misdirected because you fail to hear your passenger giving you warnings or directions? .... never occasionally often
6. (Answer only if you are usually a passenger)

Does it happen that the driver asks you quickly for directions but you don't hear first time? ... never sometimes of en

Simulation 1 : Hoisy gathering in the pub

## Now please answer these questions

1. In the test you have just done which of these made it partic- ularly difficult? .............. the music...........................
the female voices............ $\square$
the background chatter...... $\square$
having to concentrate hard.. $\square$
writing down the answers....
other. $\qquad$
2. Did you find the test .............
easy.............................
a bit difficult
quite difficult
almost impossible............ $\square$
3. What were your reactions during the test? ................. none in particular............ $\square$
only listened to the names and addresses - didn't
watch the screen............. $\square$
tried to lip read........... $\square$
it got easier as it went on. $\square$
found it interesting........ $\square$
disliked it................... $\square$
wished it would stop........ $\square$
Now please turn back to the photograph and description of Situation B and answer this question :
4. Did the test you have just done resemble the situation that you imagined when you were answering the questions about Situation B (the pub)?..... very closely...................
in some ways..................
only vaguely.................. .
not at all....................... $\square$
Any other
comment?........ . . . . . . . . . . . . . . . . . . . . . .

## Now please answer these questions

1. In the test you have just done which of these made it particularly difficult? ................... announcements too loud......
announcements not loud enough. $\square$
distorted sound quality..... $\square$
the background noise........ $\square$
catching the important parts of the message........ $\square$
having to concentrate.......
writing down the answers.... $\square$
other (please specify)
2. Did you find the test
easy throughout.
difficult in parts........... $\square$
difficult throughout........
almost impossible............
3. What were your reactions during the test? ................... none in particular. $\qquad$
$\square$
it got easier as I got
used to the voice............
other (please
specify)
Now please turn back to the photograph and description of Situation $C$ and answer this question :
4. Did the test you have just done rescmble the situation that you imagined when you were answering the questions about Situation C?................... very closely........................
in some ways.................
only vaguely...................
not at all.......................
Ary other
comment?. . . . . . . . . . . . . . . . . . . . . . . . . . .

Simulation 3 : Listening on the telephone

Now please answer these questions

1. In the test you have just done which of these made it particu-
larly difficult? .................. the noise around me..........

the male voices................
the female voices............ $\square$
voices not loud enough......
having to concentrate....... $\square$
writing down the answers.... $\square$
other. $\qquad$
2. Did you find the test
easy $\qquad$
a bit difficult. quite difficult $\square$
almost impossible............
3. During the test I held the
telephone in my ..................
$\square$
4. When I don't have to write
at the same time, I usually hold the telephone in my ........ left hand
right hand
$\square$
left hand
$\square$
$\square$
5. What were your reactions during the test? ..................... none in particular $\qquad$
$\square$
had to press the receiver hard against my ear.......... $\square$
found it tiring...............
other.

Now please turn back to the photograph and description of Situation G and answer this question :
6. Did the test you have just done resemble the situation that you imagined when you were answering the questions about situation G? .................... very closely.
in some ways.
only vaguely.
not at all


Any other
comment?......................................

## APPENDIX F

REGISTRATION AND CONSENT PORM

Please complete the following general questionnaire and the consent form:

NAME:
ADDRESS:
ACE LAST BIRTHDAY:
OCCUPATION:
SEX:

1 Have you ever received medical attention for your hearing?
YES/NO
2 Do you or have you ever experienced noises in your ears or head (tinnitus) which last longer than 5 minutes? yes/No

If yes, is this only after exposure to noise? YES/NO
3 Have you ever been exposed to high levels of noise at work? YES/NO
If yes, what kind of noise?
For how many hours per day?
days per year? $\qquad$
Years?
4 Have you ever been exposed to the noise of gum (including rifles and shotguns)?

YES/NO
If yes, what weapons?
Indicate the total number of rounds you fired:
1 -10; 10-100; 100-1000; Mure than 1000
5 Have you ever been exposed to any other luad noise (e,g, at home or as part of your hobbies and recreation) or explusions? YES/NO

If yes, please specify
6 Indicate with a tick if you have ever had any of the following treatments:

Quinine or other drugs for malaria?
Antibiotics by injection other than penicillin?
Diuretics (to make you pass mure water)?
Aspirin in large or regular doses?
Any drugs which produced dizziness or ringing in the ears?
llave you in the past year had any problems with your ears or hearing, e.g. pains, disclarges, or infections of the ear? YES/NO

8
Are you suffering, or have you in the last week suffered from a common cold or respiratury infection?

YES/NO

## CONSENT FORM

Consent form to be completed by a subject volunteering to undergo an experiment fur research purposes before the experiment conmences.

I, | consent to take part in of hearing handicap experiment |
| :--- |
| to be conducted by |
| during the period | to $\quad$ 198

The purpose and nature of this experiment have been explained to me. I understand that the investigation is to be carried out solely for the purpose of research and $I$ am willing to act as a volunteer for the purpose on the understanding that $I$ shall be entitled to withdraw this consent at any time, without giving any reasuns for withdrawal. I further certify that $I$ have seen the questions concerning medical fitness for this experiment (questions 7 and 8 abuve) and confirm that to the best of my knowledge I do not suffer from any of the cunditions listed.

Date:
Signed:

## EXPERIMENTER'S CONFIRMATION

I confirm that I have explained to the subject the purpose and nature of the investigation which has been approved by the Human Experimentation Safety and Ethics Cumittee.

## Date:

Signed:
(Researcher in charge of experiment)

## APPENDIX G

INSTRUCTIONS FOR OPTIONAL AMENDMENT TO SELP-ASSESSMENTS

On completion of each shect of the Questionnaire section III, the relevant answer sheet of Section If (Appendix E.J, items 8, C, G) was returned to the aubject together with the following instructions:

"Here is the answer shect that you filled in carlier.
Remmabser that when you were doing this we asked you to vibualize situations of the kind described at the top of the page in a general way, not any particular situation.

But now that you have experienced something similar in the teat you just listened to, you may like to tako the opportunity to confirm or chango your previous anawers.
pleaso look through your uwn answer sheet now, and if you feel you need to alter (or add to) any of your anawers uge the coloured pen so that we know what alterations (if any) you mako."

\$PNM:

\$MFO:
$\qquad$

## AMDN:




[^0]:    Question 1 on each situation was scored 1,2 or 3 for "never", "sometimes" or "often" respectively, and this number was used as a multiglying factor for the other responses on the same sheet. Strict logic might call for a weighting of zero for "this never happens to me" but it was felt that the small weighting factor 1 might be reasonable for responsen based on an inferred appreciation of the situation in queation.

    Question 2 on each situation (Qn. 3 in the case of situation $J$ ) was scored 0 to 60 in steps of 20 ( 60 was chosen as the maximum score, being the lowsst common multiple of $2,3,4$ and 5 ), question 3 (except aituation $D$, where it was omitted and situation $J$ where it was numberad Qn. 4) was scored according to the number of items ticked (e.g., 12 pointa for each box in situation $A$, 15 each in situation $B$, 10 each in aituation C). The "reaction to auditory failure" questions (e.g., Qn. 3, situation A) were scored by the experimenters' judgement of the importance of the dascriptions (and in the case of multiple ticks, selecting the worse case), out of a total points score of 60 . For example, in situation 8 , the remponsen were scored an follows:

    $$
    \begin{array}{lllll}
    \text { "ask the person to speak louder" } & \text {... } & 20 \\
    \text { "pretend I heard" } & \text {... } & \text {.. } & \text {.. } & \text {.. } \\
    40 \\
    \text { "avoid auch gatherings" } & \text {... } & \text {... } & \text {... } & 60
    \end{array}
    $$

[^1]:    *See fontnote to rable 15

[^2]:    * Subject no. 105 bracketed responses 3 and 4 jn these cases.
    ** Fixcludes the "no response" category.

[^3]:    Figure 221 Scale scores (as percent of maximum possible) on Questionnatre Section I, 'handicap' questions, against hearing threehold levels $H_{348} \mathrm{l}_{\mathrm{R}}$ (average of $3,4,6 \mathrm{kHz}$, both ears). Key: nee Figure 21.

